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ABSTRACT

The main aims of this research are to extend the averaged Lagrangian

method of describing small signal wave propagation and nonlinear wave

interaction, developed by earlier workers for cold plasmas, to the more

general conditions of warm collisionless plasmas, and to demonstrate

particularly the effectiveness of the method in analyzing wave-wave

interactions. The tneory is developed for both the microscopic descrip-

tion and the hydrodynamic approximation to plasma behavior. First, a

microscopic Lagrangian is formulated rigorously, and expanded in terms

of perturbations about equilibrium. Two methods are then described for

deriving a hydrodynamic Lagrangian. In the first of these, the Lagrangian

is obtained by velocity integration of the exact microscopic Lagrangian.

In the second, the expanded hydrodynamic Lagrangian is obtained directly

from the expanded microscopic Lagrangian. As applications of the micro-

scopic Lagrangian, the small-signal dispersion relations and the coupled

mode equations are derived for all possible waves in a warm, infinite,

weakly inhomogeneous magnetoplasma, and their interactions are examined

for propagation nearly parallel to the static magnetic field, and exactly

perpendicular. As examples of the use of the hydrodynamic Lagrangian,

the coupled mode equations are derived for interactions among two elec-

tron plasma waves and one ion acoustic wave; among one electron plasma

wave, one ion acoustic wave and one ordinary wave, and among two electron

plasma waves and one Alfven wave. The work concludes with a brief

discussion of specific cases of wave-wave interaction most likely to

be worth subjecting to detailed numerical analysis, and some suggestions

for extension of the Lagrangian method to bounded, inhomogeneous, weakly

turbulent plasmas of practical interest.
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Chapter I

INTRODUCTION

1.1 Motivation of the Research

During the last forty years, the theory of plasma waves has

developed from the simple analysis of Tonks and Langmuir of electron

plasma oscillations to very comprehensive treatments based on kinetic

theory. A wide variety of modes have been predicted by linear theory

for hot and cold magnetoplasmas, and have been studied experimentally,

particularly during the last decade. The stage has now been reached

where it may reasonably be stated that, at least for stable modes in

homogeneous plasmas, the relevant dispersion relations have been very

2
well verified.

The linear approximation is, of course, inadequate to describe

unstable waves: the predicted exponential growth of small perturbations

must ultimately be limited by nonlinear effects. As a result, nonlinear

and turbulent processes are found to play an important role in many

laboratory and space plasma situations of considerable interest. For

example, turbulent heating and anomalous diffusion are vital processes

in the heating and confinement of plasmas, and the possible achievement

of controlled thermonuclear fusion conditions. These, together with

such phenomena as charged particle diffusion out of the van Allen belt,

and the dynamics of the earth's bow shock, are highly dependent on

nonlinear effects and illustrate the importance of understanding them.

A further example is the need to understand propagation characteristics

of electromagnetic waves through turbulent plasmas, either from the point

1



of view of communications or diagnostics. The description of nonlinear

effects is therefore one of the central problems in modern plasma physics.

Unfortunately, nonlinear phenomena lead very quickly to formidable

theoretical and algebraic complexities.3
-
53 Refuge may be sought in

computer simulation of the problems, but this can be extremely expensive

if complicated situations are to be modeled realistically, and it is

easy for the physics to be obscured. There is consequently very strong

motivation to elucidate the mechanisms involved with improved analytical

tools. What is required is a formalism which will simplify the analysis

to the greatest possible degree. Such a formalism is provided by the

Lagrangian methods which form the subject of the present work.

1.2 Review of Nonlinear Wave-Wave Interaction

If two waves are propagating as exp[i(l1 t-kl' r)] and

exp[i(W2 t-k2 .r)], nonlinearity of the plasma will manifest itself in

the generation of beat waves propagating as exp[i( 3t-k3-r)], where

3 =01_+o2 and k =k +k2. If a beat wave happens to be a normal mode of35 1 2 -;3-15 '-V-~2

the plasma, synchronism is said to occur, and an exchange of energy and

momentum will take place among the three waves. The present work is

concentrated on this nonlinear wave-wave interaction process. It is

not the only significant nonlinear process; the beat wave can also

interact with charged particles moving at its phase velocity ) 3/k3

6
Nonlinear wave-particle interaction then occurs.

A simple degenerate form of nonlinear wave-wave interaction was

explored by Pierce7 in connection with the traveling wave tube. In

1956, Manley and Rowe8 established an important relationship between

the powers at different frequencies flowing into a nonlinear capacitor

2



which is now known as the Manley-Rowe relation. Its generalization

to waves is extremely useful in the analysis of wave-wave interaction

because it implies certain relations between the coupling coefficients

in the equations describing the wave coupling.9 By 1960, amplification

due to wave-wave interaction, so-called parametric amplification, had

10
already been studied extensively in the context of microwave devices.

Scarcely a paper on parametric amplifiers appeared without mentioning

the relevant Manley-Rowe relations. Since then, parametric amplification

has been studied in other fields which involve wave interactions in

nonlinear media, e.g., nonlinear optics1 1 and microwave acoustics.
1 2

Nonlinear wave-wave interaction in plasmas seems to have been

considered first by Sturrock , in 1957. He obtained Manley-Rowe type

energy transfer relations among four Langmuir waves, and calculated

nonlinear corrections to the frequencies of the waves. Subsequently,

Kino
1 4

analyzed the nonlinear coupling between three waves propagating

on a cold plasma column, with and without an infinite static axial

magnetic field. Sturrock1 5 later showed that the Manley-Rowe relations

represent a special case of the action-transfer relations applicable

16
to any system describable by a Hamiltonian. Petschek pointed out the

possibility of having instabilities due to nonlinear interactions in

systems stable to small perturbations. The nonlinear interaction of

longitudinal electron and ion oscillations was studied by Oraevskii and

Sagdeev.
1 7 Following these pioneer works, a large number of papers have

appeared. Many of them will be mentioned in succeeding sections.

Depending on the situation of interest, two theoretical approxi-

mations have been made when analyzing wave-wave interaction: the coherent

3



phase approximation and the random phase approximation. The former

is based on the assumption that each of the interacting waves is

coherent. In plasmas, many waves are available to satisfy the synchronism

conditions, and the phases of the waves of interest lose coherence due

to wave-wave interaction with other existing waves, wave-particle inter-

action or other higher order processes. However, if significant energy

transfer among the three waves can occur in a time small compared with

the time required for changes in phases, the waves may be considered as

coherent, and the coherent phase approximation is adequate. On the other

hand, if the correlation among the phases of the waves vanishes due to

the random phase change before appreciable transfer of energy from one

wave to another, then the modulus of the wave amplitudes averaged over

the phases is of interest, and the random phase approximation should be

18
used. This situation was first considered by Galeev and Karpman, and

has been used extensively in turbulence theory.5'1 9 The present work

is treated by the coherent phase approximation.

The most important equations to be obtained in the analysis of

wave-wave interaction are the coupled mode equations, from which spatial

and temporal variations of amplitudes of the interacting waves can be

calculated. The Manley-Rowe relations follow from them, and are useful

in understanding certain features of the parametric interaction. It

also provide a check on the tedious algebraic manipulations usually

required in the derivation of the coupled mode equations. We shall now

discuss several of the mathematical methods that have been proposed and

used to obtain them.
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1.2.1 The Iterative Method

The most direct line of attack on wave-wave interactions is

the iterative method. The procedure is to expand up to second order

in the perturbation amplitudes the current equation and the equations

describing the particle dynamics, i.e., the single particle equation of

motion for cold plasmas, the moment equations for the hydrodynamic

approximation, or the Vlasov equation for the microscopic treatment of

warm plasmas, and to simplify second order terms by the use of small

signal relations and the synchronism conditions. Combination of the

resulting equations with Maxwell's equations gives the coupled mode

equations and the Manley-Rowe relations.

Up to now, the majority of analyses of wave-wave interaction have

been done by this method, partly because it is sure and well known

from the fields of microwaves and optics, and partly because other

methods have not been well developed. Specific cases treated by either

the cold plasma or the hydrodynamic approximation are: interaction among

17,20
three longitudinal waves, 2 among two ordinary waves and one Langmuir

21 22
wave, among two ordinary waves and one extraordinary wave, among

23,24 25
three modified ordinary waves, among three extraordinary waves, 5

26
among two circularly polarized waves and one Langmuir wave, and among

27
three right-hand polarized waves. 7 The theory has been extended to

the microscopic treatment for the specific cases of: interaction among

28
three longitudinal waves, among two transverse waves and one ion

acoustic wave,2 9 among two ordinary waves and an extraordinary wave,3

and among three cyclotron harmonic waves.31 32 Stenflo3 3 has considered

generally the interactions of waves propagating parallel to the static

5



magnetic field, and the extension to waves with their wave vectors

slightly oblique to the magnetic field have been investigated by Kim,

Harker and Crawford. 34

The iterative method has the advantage of being straightforward,

and can be applied to systems for which the Lagrangian approach to be

described below does not apply, i.e., a Lagrangian function is

not derivable. In practice, however, it is extremely tedious. For

warm plasmas, especially, the charged particle velocity distribution

function has to be expanded to second order in perturbation by solving

the differential equations derived from the Vlasov equation, with a

driving term containing the first order distribution function. Since

the driving term is already complicated, the entire process requires

very laborious algebraic manipulation.

1.2.2 The Averaged Lagrangian Method

In this subsection, we shall discuss the averaged Lagrangian

method and its application to cold plasmas. The warm plasma case has

formed the main topic of our work, and will be discussed separately in

Section 1.3. The procedure is as follows.35 First, the plasma pertur-

bation parameters, i.e., the position vectors of particles and the

fields, are expanded in terms of a sum of sinusoidal perturbations from

equilibrium whose amplitudes, frequencies, and wave vectors are assumed

to vary slowly in space and time due to the nonlinearity. The Lagrangian

is then expanded in terms of these perturbations, and averaged over

space and time so as to remove rapidly varying terms. The Euler-Lagrange

equations derived from the zeroth order Lagrangian yield the dynamical

equations for the equilibrium state. The first order Lagrangian vanishes.

6



Variations of the second order Lagrangian with respect to the amplitudes

and phases give the small signal equations and the equation of action

conservation in each mode. Similar variations of the third order

Lagrangian give the coupled mode equations and the Manley-Rowe relations.

For the method to be applicable, it must be possible to set up a

Lagrangian density for a given system, i.e., such that application of

Hamilton's principle leads to a set of Euler-Lagrange equations corres-

ponding to those chosen to describe the plasma behavior. It is well

known that the description of charged particles in an electromagnetic

field satisfies this requirement.3 6 Sturrock3 7 used Hamilton's principle

for electron beams and for cold plasmas to show that the first order

Lagrangian vanished to within a total divergence, and that the second

order Lagrangian gave the required small signal equations.

The averaging process has been discussed by several authors.

Sturrock3 8 introduced a parameter in which the Lagrangian and the dynamical

variables are cyclic, and showed that the time averaged Euler-Lagrange

equation obtained from variation of this parameter yielded the action

59transfer equations. Galloway3 9 considered the equation for energy con-

servation averaged in time and space in order to get the wave coupling

coefficient. Whitham studied a Lagrangian averaged over the fast

varying waves in a slowly varying medium. The dynamical equations were

obtained by variation of the averaged Lagrangian with respect to the

wave amplitudes. From the variation in the phase of waves he obtained

an adiabatically conserved quantity. Bretherton and Garrett
41

showed

that this adiabatically conserved quantity was the wave energy density

divided by frequency. This conservation equation is precisely the

7



action-transfer relation previously obtained by Sturrock
3

, who had

concluded that the Manley-Rowe relations are a special case of the action-

transfer relation. Dewar
4 2

has since shown rigorously that this conser-

vation relation holds to all orders in e , where the small parameter

E is the ratio of the period (or wavelength) of the fast varying wave

to that of the slow variation.

The averaged Lagrangian method has been applied by Dougherty 3 to

obtain equations for ray tracing, to demonstrate conservation of wave

action, and to derive nonlinear coupled mode equations in a relativisti-

cally covariant form. While Dougherty presented the application of the

method in general terms, specific cases have been studied by various

authors. Galloway and Crawford
4 4

have applied it to the nonlinear inter-

action of waves at arbitrary propagation angles in an infinite magneto-

plasma, and illustrated its effectiveness in obtaining explicit

expressions for the coupling coefficients. Dysthe35 not only gave a

clear presentation on how the averaged Lagrangian method is applied to

nonlinear wave interactions, but also studied the self-action effects

and the decay problem of a finite amplitude wave into sidebands by this

method. The coupled mode equations for Langmuir and ion acoustic waves

have been derived by Vedenov and Rudakov.4 5 Dougherty considered the

waves in a cold unmagnetized plasma46 as an example of his earlier study.43

It is clear from the work cited so far that the Lagrangian method

is very efficient for treating nonlinear wave-wave interaction. Its

advantages over the iterative method derive mainly from the following

features. First, in the iterative method, the coupled mode equations

are obtained as the end-product of tedious algebraic manipulation.

8



Furthermore, the Manley-Rowe relations are obtained only from the coupled

mode equations. In the averaged Lagrangian method, however, general

expressions for the coupled mode equations and Manley-Rowe relations

appear naturally before specifying an explicit expression for the

Lagrangian function for a particular system. Further, the third order

Lagrangian itself gives the coupling coefficient, and the expansion of

the Lagrangian only needs relatively simple and straightforward algebra.

1.2.3 The Hamiltonian Method

As the Manley-Rowe relations indicate, wave energy appears

as an important quantity in nonlinear wave interaction. Therefore, the

development of a Hamiltonian method is quite natural. This approach was

initiated by Sturrock 15'
47 in his study of the nature of the Manley-Rowe

relation attributable to any system which may be described by a Hamiltonian.

The application to wave-wave interaction is similar to that of the

Lagrangian method. The Hamiltonian generates higher order perturbation

terms which are averaged over the fast varying temporal and spatial

variations. The canonical equations from the second order Hamiltonian

give the small signal equations, and the equations describing the non-

linear effect are obtained from the third or higher order Hamiltonian.

In this method, there are two approaches dependent on the choice

of canonical variables: the first uses action-angle variables,48 and

was initiated by Sturrock.1 5 '1 7 The Euler-Lagrange equation obtained

by variation of the Lagrangian with respect to angle is the action

transfer relation. The other canonical equation gives the frequency-

shift relation. Even though this frequency-shift relation is obtainable

by the Lagrangian method,35 it emerges more naturally in the Hamiltonian

9



method. This approach is analogous to the averaged Lagrangian method,

but does not provide the coupled mode equation obtainable by the

Lagrangian method. In order to overcome this disadvantage, Harker
4 9

has

recently developed another approach more closely parallel to the second

quantization method (see Section 1.2.4.) than the Lagrangian method.

This second approach uses for canonical variables the classical para-

meters corresponding to the probability amplitudes in quantum mechanics.

These parameters and their complex conjugates are then canonical conju-

gates, and the canonical equations yield the coupled mode equations.

He has applied this approach to several illustrative cases: the inter-

actions of two longitudinal waves and one transverse wave, of three

longitudinal waves on a positive column, and of three longitudinal waves.

1.2.4 The Second Quantization Approach

Although the concepts of quantum mechanics, in particular

the idea of quasiparticles, have been used by Soviet scientists, 18 455
0 -

52

it was not until recently that a formal quantum mechanical method was

developed for wave-wave or wave-particle interaction problems.5 3 The

procedure consists of expanding the Hamiltonian about equilibrium, and

then quantizing the fields54 in order to express the Hamiltonian in

quantum mechanical form. The transition probability from one state to

another can then be obtained by the Fermi golden rule in the time

dependent perturbation technique. For a classical plasma, the transition

probability is taken to the classical limit.

The method was originally developed by Pines and Schrieffer.5 5

Walters and Harris56 used the method to study the nonlinear interactions

of longitudinal waves in a magnetized plasma. The static magnetic field

10



was assumed to be so strong that the electron motion was essentially

one-dimensional. It was demonstrated that the classical limit of three-

wave interaction among plasma waves yielded an earlier result of Aamodt

and Drummond.57 Krishan and Selim studied the interactions of trans-

verse waves,58 and of transverse and longitudinal waves5 9 in an

unmagnetized cold plasma. Three-and four-wave interactions in a cold

plasma with no magnetic field have been analyzed by Zakharov.60

The advantages of the method are that, if the Hamiltonian is obtained

in the quantized quantities, obtaining the transition probability is in

principle straightforward. While the classical treatment is usually

confronted with the conflicting choice of coordinate systems, i.e.,

Eulerian coordinates for fields and Lagrangian coordinates for particles,

such complications from the coordinate systems do not occur in this

method. The classical limiting procedure is sometimes extremely tedious,

61
however. Furthermore, unnecessary quantum mechanical steps have to

be followed even for problems which can easily be solved by classical

methods. If there are only a few monochromatic waves in a plasma, then

the use of the Fermi golden rule to calculate transition probabilities

is no longer justified. Therefore, this method is primarily for the

case where the random phase approximation has to be made.

1.3 Review of Lagrangian Method for Warm Plasmas

For nonlinear wave interactions in cold plasmas, the efficiency of

the averaged Lagrangian method has been demonstrated by many authors.

The algebraic manipulation in the iterative method is much more tedious

for warm plasmas than for cold plasmas because the Vlasov equation has

to be solved to second order in the perturbations. It follows that the

11



Lagrangian method should be even more advantageous for warm plasmas

than for cold plasmas. No comprehensive development of the method has

been presented so far for nonlinear wave interactions in warm plasmas.

This is the principal aim of the present work.

1.3.1 The Microscopic Treatment

Although a microscopic Lagrangian function for warm collision-

62
less plasmas was first developed by Low more than ten years ago,62 only

a few authors have made use of it. There are certain obscurities in

the original derivation. For example, Low showed that his Lagrangian

gives the correct dynamical equations. In order to obtain small signal

equations in correct form from the second order Lagrangian, however, he

had to impose a consistency condition. Any solution derived from the

expanded Lagrangian which would not satisfy this consistency condition

was to be considered an incorrect solution. No discussion of the origin

of the condition was given.

Low's Lagrangian has been used for several analyses of wave-wave

interactions in warm plasmas: Suramlishvili obtained the coupling

coefficients for three- and four-wave interactions involving Alfven,

helicon and ion acoustic waves.5
2

Boyd and Turner 3 considered the

interaction of two ordinary waves and a cyclotron harmonic wave.

Dewar used Low's Lagrangian to show the important role of nonlinear

Landau damping in the modulational instability. The emphasis of these

contributions is rather on solving specific cases than providing general

theories. Furthermorethey have not discussed Low's consistency condition

for the second order Lagrangian, nor for those for orders higher than

second. One may therefore question whether any of their solutions are

12



incorrect. This point has been cleared up by Galloway and Kim,6 6 who

have shown that the consistency condition is not necessary.

1.3.2 The MHD Approximation

So far, most applications of the Lagrangian approach to

plasmas described by the hydrodynamic equations utilize the MHD approxi-

mation, i.e., the plasmas are able to maintain a local isotropic velocity

distribution by virtue of an assumed short mean free path for ion-

neutral collisions. This model is used mainly to study low frequency

phenomena that are usually associated with ion motions; the electrons

serve primarily to maintain electrical neutrality. Higher frequency

phenomena, such as plasma oscillations, are neglected. An immediate

consequence of the restriction to low-frequency phenomena is the simpli-

fication that the displacement current term in Maxwell's equations can

be dropped. The current due to free electrons is supposed to obey

Ohm's law, because of the high electron-ion collision frequency.

The Lagrangian appropriate to the MHD approximation gives only the

second moment equation (the momentum transfer equation); other moment

equations, Ohm's law, and Maxwell's equations, are used as subsidiary

conditions. This Lagrangian has been used by Eckart6 7 who showed that

the equations of motion for both incompressible and compressible fluids

could be derived from variational principles. Katz
6 8

derived the

equation for a one-fluid, inviscid, perfectly compressible plasma in an

69
electromagnetic field. Newcomb, 9 on the other hand, treated a perfectly

conducting fluid governed by the conventional hydrodynamic equations,

for which the displacement and convection current are negligible under

most conditions of interest. Using the minimum potential energy

13



principle, he studied the stability of steady flow for isotropic

plasmas in toroidal and poloidal fields. Similar systems consisting

of fluid, vacuum and perfectly conducting solid walls were considered

by Lundgren.7
0

Application of this Lagrangian has been extended

recently to nonlinear problems by Dewar, who has studied the nonlinear

interactions of hydromagnetic waves.

1.4 Aim of the Research

The foregoing review will serve to demonstrate the need to develop

a unified and general theory of the Lagrangian method for nonlinear

wave interactions in warm plasmas. This is the main purpose of our

work, and theory will be presented for both the microscopic treatment

and the hydrodynamic approximation to it.

1.4.1 The Microscopic Treatment

In what follows, we shall discuss first the microscopic

treatment. This treatment is parallel to the averaged Lagrangian method

developed in cold plasmas. A rigorous theory is presented to show how

the method has to be modified in phase space. Results of some illustrative

examples are compared to those previously obtained by other methods.

In Chapter II, a Lagrangian for a warm plasma is formulated based on

66the work by Galloway and Kim.66 The origin of Low's consistency

condition is pointed out, and the lack of necessity for it is proved.

This Lagrangian is used in Chapter III for the linear theory to obtain

the equation of the particle trajectories and the dispersion relations.

By proving the equivalence of the conservation of action and the conser-

vation of energy, the equivalence of the procedures used by Dougherty 4 3

and Dysthe, 35and by Galloway,3 9 for obtaining the coupling coefficient



is shown. In Chapter IV, nonlinear wave-wave interaction is considered.

The averaged Lagrangian method is applied to obtain the action transfer

equation and the coupled mode equations. As some illustrative examples,

the coupled mode equations are obtained in explicit forms for all

possible interactions among waves propagating nearly parallel, and among

those propagating exactly perpendicular, to the static magnetic field.

These examples serve well to demonstrate the advantages of the method.

1.4.2 The Hydrodynamic Approximation

A plasma is well defined if the three velocity distribution

functions for electrons, ions, and neutral molecules are known. However,

they are often very difficult to determine. One must then be satisfied

with certain mean values describing less perfectly the state of a

plasma in the hydrodynamic approximation. This approximation is especially

appropriate for a plasma where particle velocities are not comparable

to the phase velocity of waves.

Chapter V is devoted to the Lagrangian appropriate to the hydro-

dynamic approximation. It is formulated by two different methods. The

first is by integrating the exact microscopic Lagrangian in velocity

space. For the linear and nonlinear theory for small perturbations, the

Lagrangian is expanded. The expansion, however, involves some mathema-

tical difficulties. The other method is to obtain the expanded hydrodynamic

Lagrangian directly from the expanded microscopic Lagrangian by integrating

in velocity space. In this way the difficulties involved in the expansion

of the hydrodynamic Lagrangian can be avoided. As applications, inter-

actions among two electron plasma waves and one ion acoustic wave, and

among one electron plasma wave, one ordinary wave, and one ion acoustic

15



are considered by the first method, and that among two electron plasma

waves and one Alfven wave by the second method.

The Lagrangian to be described is more general than that of the

MHD approximation mentioned in Section 1.3.2: first, it includes both

the moment equation and Maxwell's equations; second, while only the

ion motion is considered in the MHD approximation, our Lagrangian

includes both electron and ion motions so as to account for both electron

and ion waves; third, the MHD Lagrangian can be obtained from ours as

the special case of spherical adiabatic compression.
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Chapter II

A LAGRANGIAN FORMULATION FOR WARM PLASMAS

The complete set of equations for describing a warm collisionless

plasma consists of the equation of motion for a charged particle,

Maxwell's equations, and the Vlasov equation. The dispersion properties

of plasma waves are determined by combining the expressions for current

and charge densities obtained from the Vlasov equation with Maxwell's

equations.

An alternative method for describing plasma waves is to use

Hamilton's principle. This can be done by formulating the Lagrangian

in phase space to include the equation of motion, and Maxwell's equations.

In the course of carrying out the variational procedure, a conservation

law in phase space (Liouville's theorem) must be imposed on the evolu-

tion of the electron distribution. For the collisionless plasma, this

is the Vlasov equation.

In Section 2.1, the exact expression for the Lagrangian will be

formulated rigorously. It will be proved that this is the desired form

by showing that the Euler equations give the equation of motion and

Maxwell's equations. In Section 2.2, we shall deal with the Lagrangian

for a slightly perturbed system. The required approximate form is

obtained by expanding the Lagrangian about the equilibrium state. In

Section 2.1, Lagrangian and Eulerian coordinate systems are adopted

simultaneously for the particle part and the field part of the

Lagrangian, respectively. In order to overcome the difficulties arising

from using mixed coordinate systems, a field-like Lagrangian function

will be derived in Section 2.2, by making use of displacement vector3 7

(sometimes called polarization vector7 ) coordinates. In Section 2.3,
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it is shown that the first order Euler equations, obtained from the

second order Lagrangian function, are the desired first order equation

of motion and Maxwell's equations. Comments on Low's procedure are

made in Section 2.4.

2.1 The Field-Particle Lagrangian

The Lagrangian for a system of electrons in an electromagnetic

field consists of three contributions: that of the field, that of the

electrons, and that of the interaction between the electrons and the

field. In obtaining the last two, a Lagrangian coordinate system has

to be adopted, while an Eulerian coordinate system is used for the

first. We will first consider the last two parts separately. The

total Lagrangian will then be obtained by adding the field contribu-

tion to the electron contribution.

The contribution of a single electron at (r ,v ), at time t,

including its interaction effects with the field, will be the classical

expression for the charged-particle Lagrangian,36

2 mv2(t) + q[cp(r t) - v(t) A(r ,t)] (2.1)

where q is the charge of an electron; cp and A are the scalar and

vector potentials, and the subscript a indicates a specific electron.

Equation (2.1) holds everywhere along its trajectory.

Now consider an infinitesimal box, cell a, in phase space. It is

considered to contain many electrons in the vicinity of electron a,

and defined to move in time such that no electrons flow in or out, as

shown in Figure 2.1. This conservation law implies that the phase

volume and the electron density of cell a remain constant along its

18
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Figure 2.1 Conservation in phase space [the number of electrons, n

inside cell C is constant along its trajectory].
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trajectory. Since the electromagnetic fields can be considered uni-

form over the cell, the contribution of cell a to the Lagrangian func-

tion may be written as n £, where n represents the number of
a Cr~~

electrons in the cell, normalized to the total number of electrons in

the system. The total contribution of the electrons in the system

can be found by summing ? over all a. The discrete summation of

cells can be transformed to integration by introducing continuous variables

for a, so that n P . Jd3r' Jd3v'F(r',v') ?, where F is a con-

tinuous function. The continuous set of variables (r ,v ) are known

as Lagrangian coordinates, and are usually chosen to indicate the initial

position in phase space of cell a. 7 2

Adding the contribution of the field, £F to that of the electrons,

P
£ , we obtain the total Lagrangian,

3 3 I P -f 
L = Sd3r Id3v F(r ,v)£P +Jd3r£F (2.2)

where £ and £ are defined as

P 1 2,'
£ mv (r ,v ,t) + q[P - v(r',v',t) A] I

(2.3)

F = 1 r/A \ 2 121
2 i [(V + at [ (vx A)2

]

Here, all quantities for which the independent variables are not ex-

plicitly shown in £P are to be considered as functions of r',VI

and t, through their dependence on the Eulerian variables r, e.g.,

(P= [r(r',v ,t),t].

The quantities to be independently varied are the position of an

electron, r, and the fields, A and p, all of which satisfy the
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usual restrictions on their variation,

6*(tl ) = 6(t2) = O , (2.4)

where t and t are the initial and final times. Before taking1 ~~2

variations, it should be noted that the conservation law in phase

space requires

dF
dt ° . (2.5)

Some authors6 7 '6 8 have modified the problem by introducing a Lagrange

multiplier for this subsidiary condition, but this is not essential.

By letting F(r',v') = f(r,v,t), and changing from the variable

set (r ',v') to (r,v), we see that Equation (2.5) can be written as

df af Ft = Tf + v Vf + . V f = 0 , (2.6)
dt - ~t m v

which is the Vlasov equation.

With the help of Equations (2.4) and (2.6), the Euler-Lagrange

equations from r, Cp, and A variations of Equation (22), respectively,

yield7 3

dv
m dt = -q(E + v X B) , (2.7)

V* E= 4-qd3v f(r,v,t) , (2.8)

lV XB =-qd3v vf(r,v,t) + e
O

t (2.9)

where

aA
E = -VP - a- , B = V X A. (2.10)

Equation (2.7) describes the motion of an electron in the electromagnetic

field. Equations (2.8) - (2.10) constitute the Maxwell equations.
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2.2 Approximation to the Lagrangian

In setting up a variational principle for the trajectories of an

assembly of electrons, it is quite natural to use Lagrangian coordinates.

As one may appreciate from Section 2.1, however, this would involve some

difficulties in integrating by parts, since the differential operators

are in Eulerian coordinates. Furthermore, the Eulerian coordinate system

is overwhelmingly popular in describing plasmas. It is therefore con-

venient to choose Eulerian coordinates for the independent variables.

Fortunately, the conflicting requirements can be satisfied by the intro-

duction of a 'displacement vector'.37

Figure 2.2 shows a cell in phase space at (r,v), at an instant of

time t, following a trajectory in a perturbed field. It would be at

(r ,v) at the same instant of time if the perturbation were absent. Let

(, ~) be the displacement of the cell due to the perturbation, then

r= + v = vO + t * (2.11)

Let (rv,0) be fixed for all time. The electrons occupying the cell at

(rOv0) in equilibrium at t are flowing out of the cell as time passes,

and another group of electrons occupies the cell at a later time. The

cell at (rv) in the perturbed state, which corresponds to the equili-

brium cell at ( 0,vo), is then located at a different place from the

one at t. However, the new location (rv) still satifies Equation (2.11).

From the definition of two corresponding cells, the number of elec-

trons in the equilibrium cell is always the same as that of the per-

turbed cell. Furthermore, the number of electrons remains constant for

all time. It therefore follows that

f(r,v,t) d3rd3v = fO(r vO ) d3rd3V , (2.12)
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Figure 2.2

Figure 2.2
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Perturbed trajectory in phase space [without perturbation,
the cell would follow the solid curve, Its perturbed
trajectory is shown dashed].
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where f0 is the electron distribution function in the equilibrium

state. But the conservation of density along the perturbed trajectory

requires

F(r',v') = f(r,vt) , d3 r'd3 v = d3 r d3 v . (2.13)

Separating the fields into equilibrium and time varying quantities as

O = 1 (P0 A=A a, '(2.14)

and substituting Equations (2.11) - (2.14) into Equation (2.2) gives

the Lagrangian

(3(Od3vo 'O" P + fd3 IF
L =d3r 0 d3v0 f 0 ( ) £ + Id3r £ (2.15)

where we have

£ ~m( o (+a) , (2.16)
2 ([o + )+ <O +1 - (,'O + () *(A + a)] (2.16)

F ~ e +~+ ~ (V + 2oCP + 2 VO X AO + X) 2 (2.17)£ 20( 00 + 0 .-at O 0

The field quantities in Equation (2.16) should be evaluated at

(0O + g, ZO + g), and the subscript 0 on the differential operators

represents the (0,) - coordinate system. In Appendix A it is shown

that

= Dg , (2.18)

where the operator D is defined by

D-t +O * V + a V (2-19)'-0 0 '-0 vO (219)

The Lagrangian in Equation (2.15) is now a 'field-like' one, and the

independent variables in Equation (2.15) can be considered as Eulerian

coordinates.
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If the perturbation is small, then the expansion of the Lagrangian

in Equation (2.15) generates a series in which Ln the Lagrangian of

th
n order in the perturbation, is given by

Ln = Jd3rJd3v fo(rL,9X S + Jd3r F. (2.20)

Here the subscript 0 on r and v has been dropped, and, unless spe-

cified, the subscripts 0 and 1 will be dropped from variables hereafter

P F
up to Chapter V. The first few terms of £n and n are as follows:

Zero Order: For the unperturbed terms we have

:41 mv + q(~ - A) v

SO 2 ( A( (2.21)
F 0 (v)2 -1 ( x A) 2 .

20

First Order: We have the separate expressions,

mv Dg + q[L + ( · V)( - v ( · V)A - D A - v a],

F 0 . (V( + -) (V x A) (V X a) . (2.22)1 0 at 0

It is obvious that

L1 : 0 , (2.23)

since fL0 dt has been made stationary by choice of the zeroth order

solution.

Second Order: In this case, the separate expressions are

Z2 =2m(Dg) + q[(g. V)Cp+ (:VV)] -qv. [( V)a +2 (:) A]

F * [(V + )2 1 VX2-qD~' [a+ (~. v)AA] £2,2 ~ t /-~---( vxa (2.24)
,..,D - 7 t)(VX 2 (2.24),.., ~~~~~~21a 0
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where the double dot product is such that ab:cd = a . (b · c)d. Sub-

stituting them in Equation (2.20), and making use of the relations,

aa
e =,-V - - , b = V X a ,~~ ~at (2.25)

gives, after some manipulation,

L = fd3rfd3vf0{2 m(D)2 - q, * (e + v X
2 J J *( 2 *v -2

- q~ . (g v)(E+ vx B) + . fdr+f

b) + q Dg g X B

2 1 2
(e0 e -- b ) -I0-o

Third Order: The field contribution vanishes at this order, leaving

P 1 1 1 1
3 = 2 q[( :VV) Y + M (gV)U] - qv - [(gg:VW)a + . (VVV)A]

-3 3

1 F
-q D [(i · V)a + ~ (~:V)A] , =0, (2.27)

£3 =0 ,

where the triple dot product is defined such that

Substitution in Equation (2.20) gives

abc:def = a.[b.(c.d)e]f.
- . - '~ (cd~e f

L3 = qjd3rfd3v fo{ (gg:VV) 9 + 1 ( -V v (g%:VV)a+ 1 (ggg VVV)A]

- Dg · [( ·* V)a + 2 (%:VV)A] (2.28)

2.3 First Order Equations

Before proceeding further, we must demonstrate that variation of

our second order Lagrangian gives the small signal equations correctly.

Variation of Z: Taking the variation of L2 [Equation (2.26)] with

respect to Z yields

mD2 = f + ( V)F- q D X B ,mD = f + ' VZ - q D~ X B , (2.29)

where F and f are given by
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F = -q(E + v X B) , f = -q(e + v X b) . (2.30)

Now, expansion of Equation (2.7) about (0O,ZO) in equilibrium yields

dt (ZO + ) q[E + ( ')E + + e + (O ) X fB+( )B+b] (2-31)

Extracting the first order quantities from Equation (2.31), and dropping

the subscript 0 from 'O, gives Equation (2.29), and thus confirms that

it is the correct small signal equation of motion.

Variation of _: Carrying out this variation leads to the expression

OY · e= qid3vV (fo) , (2.32)

which we must show to be the first order Poisson equation. To do this,

it is sufficient to show that the first order charge density is

p qfd3vV · (f) . (2-33)

From the definition of a cell, described in Section 2.2, .'it follows

that the number of electrons in the cell at (r,v) in the perturbed field

is the same as that in the cell at (rO,vo) in the equilibrium state

f(rv,t)d3vd3 r = fo(ro,O)d3vod3ro , (2.34)

where d3vd3r, the volume of the cell at (r,v) (see Figure 2.3), is

related to d3vod3ro, the volume of the cell at (r0,v0), by

0~~~~~~~~~~~~~~~~~~
d3vd3r= d3r = (2-35)

d3o~0 a (':~ ~( Z~0

where I is the Jacobian. Substitution of Equation (2.11) for the

Jacobian reduces Equation (2.35) to the first order equation

d3vd3 r = (1 + V0 * )(l + o )d Vod d 3 r0 (2.36)
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JV
d3 v

-r

Figure 2.3 Phase space elements [the volumes of the shaded ele-

ments are both d3r od3vO . The volume of the cell in
0the perturbed system is d3rd3v].the perturbed system is d rd vi.
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From Equation (2.34), the number of electrons contained in the perturbed

cell at (r,v), of volume d3rod3vo, may be written to first order as

f(rvt)d vod3 ro = f0 (o'-O)(l
1

- O - VO * )d vod
3

ro (2.37)

On the other hand, the number of particles in the cell at (r,v), of

volume d3rod3v
0

in equilibrium, is to first order

fo(r,v)d3Vd 3 ro= [fo(O,O) + ( .Vo)fo(OO)+ ( ' VvO)fO(O, v )]d3v d3 r 

(2.38)

Subtracting Equation (2.38) from Equation (2.37) gives the first order

distribution function

fl(rnv) = -O * (f - V0 ( 0 . (2.39)

Integrating fl over ~O yields

p = qjd3voV0 ' (fo) (2.40)

Dropping the subscript 0 from (r0) in Equation (2.40) gives Equation

(2.33). Equation (2.32) is, therefore, the correct first order Poisson

equation.

Variation of a: Finally, variation of Equation (2.26) with respect

to a, and use of the conservation law for the equilibrium density,

v Vf + a V f = 0 (2.41)N0 v'

yields

1 3e
- VX b = a qJdv[foD - vV . (fc)] (2.42)

PO - 0 b t

It only remains to show that the first order current density is

J = -qfd3vfA - v VO (f I )a-~ Jv 0 Lf4-V0 0 4 , (2.43)
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to confirm that Equation (2.42) is one of Maxwell's equations.

By following an argument similar to that used above, we may write

v f(r,v,t)d3vd3r = (%O + )fo(,O,,o)d3 rod3 vo (2.44)

for the perturbed cell at (rv). Substitution from Equation (2.36) gives

v f(r,vt)d 3Vod3r = (~O + fo(3o'o)d 3 Vod3ro.t 0 0, f v~O )d r0

-o o(oo)[VO ' + VvO' Vd
3
r . (2.45)

The term similar to Equation (2.44) for the cell at (rv) in the equili-

brium state may be written as

v fO(rv)d3 Vod 3 r 0 = (-O + )f 0 d3Vod3ro

+ ~O( V0 + VvO)fO(O,)d
3
V
o
d
3 ro (2.46)

The first order current density is

j = qjd3v0 v[f(r,v,t) - fo(rv)] (2.47)

Substitution of Equations (2.45) and (2.46) reduces Equation (2.47) to

Equation (2.43), as required.

2.4 Comments on Low's Procedure

Low (1958) expanded the Lagrangian about the equilibrium state

,according to the scheme illustrated in Figure 2.4. Because of the ini-

tial conditions

C= o=, (2.48)

the initial electron density, F(r',v') and volume, d3r ' d3vA in the

perturbed system can be considered as those at t = 0 in equilibrium,

as shown in Figure 2.4. The conservation law along the unperturbed

3o



d3 r d3 v

d3 r' d 3 v'
L r----p

- -- -~ - -~ - ---

d3 rod3 vo

Figure 2.4 Low's model for the expansion of the Lagrangian.
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trajectory then gives

F(r',v') = f(r,v,t) = fO (O,O) , d3rd3v = d3r'd3v ' d3rd , (2.49)

and it is this equation which Low used for the expansion of the Lagrangian.

Equation (2.49) requires unit Jacobian, which use of Equation (2.11) shows

is equivalent to

V + Vv 0 (2.50)

This is the so-called "consistency condition", used by Low in proving

the first order Euler-Lagrange equations [Equations (2.32) and (2.42)] to

be the first order Maxwell equations. Low argued that any solution from

his Lagrangian which does not satisfy Equation (2.50) must be thrown out

as an improper one.

If the consistency condition is accepted, the misleading impression

is gained that the Lagrangian would be invalid in a system with different

initial conditions, or in a steady state which is not affected by any

initial conditions. Furthermore, a higher order "consistency condition"

would presumably be required in order to check the validity of solutions

to nonlinear problems, i.e. corresponding to the inclusion of £3 and

higher order terms in the series approximation to £.

On the other hand, our transformation of coordinates via Equations

(2.12) and (2.13) does not require any specification of initial conditions.

Neither do we need any restriction in proving Equations (2.32) and (2.42)

to be Maxwell's equations. Low's Lagrangian [Equation (2.2)] and the

supplementary conservation laws [Equation (2.5)] are in fact the complete

set of equations to describe a warm, collisionless plasma with arbitrary

initial conditions. All solutions from his Lagrangian are therefore

proper without invoking his consistency condition.
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Chapter III

MICROSCOPIC TREATMENT

I. LINEAR THEORY

To describe the small-signal behavior of warm plasmas, we may

use the first order Euler-Lagrange equations [Equations (2.29), (2.32)

and (2.42)] obtained from the Lagrangian second order in perturbation

in Chapter II. Fourier transformation of those equations should give

the dispersion relation. An alternative procedure is to average the

second order component of the Lagrangian density with the perturbing

variables expanded in a Fourier series. Variations of the averaged

Lagrangian with respect to the Fourier amplitudes of the variables give

the Fourier transformed form of the first order equations. The advantage

of the averaged Lagrangian method is that it gives an additional equation

which cannot be derived in Chapter II. It is the equation for conserva-

tion of action obtained from the variation with respect to phase.

The above procedure is presented in Section 3.1; small signal equa-

tions and the equation for conservation of action are obtained for an

infinite, collisionless, warm plasma in a uniform static magnetic field.

It is also shown that the Euler-Lagrange equations obtained by variation

with respect to the amplitudes are the first order equations obtained in

Chapter II. In Section 3.2, the equation for the conservation of energy

is derived from the averaged Hamiltonian, and is shown to be equivalent

to conservation of action. The particle trajectory equation is solved,

and wave dispersion relations are obtained in Section 3.3 for all possible

magnetoplasma waves propagating at an oblique angle to the static magne-

tic field. Results of Section 3.3 are given for the limiting cases of

waves propagating nearly parallel and exactly perpendicular to the magne-

tic field in Sections 3.4 and 3.5.
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3.1 Euler-Lagrange Equations from the Averaged Lagrangian

3.1.1 Procedure

The perturbing dynamical variables can always be expressed

as a sum of propagating waves

~(r,v,t) = '{k(v) exp[ik(r,t)] + k(v) exp[ik(r,t)]] 
k ik ..- k _ io-k.

k

rat) = kZl{Eak exp[iek(rnt)] + ak exp[iS_k(r,t) } , (3-1)

where a prime indicates that the summation extends over only half of

k-space, and the 0 k's are integer multiples of a phase angle 9.

Then variables Lk and ak satisfy

1 -2-i
Lk(v ) = 2 | (r,v,t) exp(-ike)de ,

0

2

a -Ti a(r,t) exp(-ike)de . (3.2)

An equation similar to the second one in Equation (3.1) can be written

for the scalar potential, Cp. It is apparent then from the Fourier analysis,

that

Lk Sk k 
k k

(3-3)

The angular-frequency, "k, and the wave vector, k, are given by

~k
bek ~ 0

k

'k = bt ' k = ~ br * (3.4)

The ekUk and k are complex in general. However, their imaginary

parts can be assumed to be very small compared with their real parts for

stable or nearly stable waves, for which the linear theory is valid. The

imaginary parts may therefore be neglected.

With the definition of Equation (3.1), the single particle Lagrangian

second order in perturbation may be written in the form
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p ASP( 2) (@ ,vj* i )
£2 k I

where the bar over £2 indicates that averages are taken in space and

time. The Euler-Lagrange equation obtained from the J* variation of

Equation (3.5) yields

azP(2) £ a sP(2)

J*a ji [~:~*/~i I= 0 (3.6)
E a a(agk /avi)

Solving Equation (3.6) gives the spatial displacement vector, ,k in

terms of field quantities.

The averaged Lagrangian density component, £2' is also a function

Of S. However, since can be eliminated with the help of Equation

(3.6), it can be written as

jt~~(2) z 3z2' £(2) Z(2) ) Ai-QD k) a
~22 k k 'k = SA k (.k,) ak ak (3.7)

The Euler-Lagrange equations obtained from the ak
j *

and k variations
k ~~k

of Equation (3.7) yield, respectively,

ij2 A 3 (Wkk) ak = 0 ' (3.8)

2) ~ ~ 2)

t ( )' _ ( -)0. (3.9)

The derivative a/'t (or b/ar) denotes that the differentiation is taken

with r (or t) fixed. It is, however, considered as 'total' in the

sense that the dependence of (2) on t (or r) through ai or k is

allowed for. The nontrivial solution of Equation (3.8) gives the

eigenvalues determined by

det Ak = 0 , (3.10)

35



Its eigenvectors reduce Equation (3.7) to

& 2) = 0 (3.11)

Equation (3.9) may be written as

t(N)+ 3 .1'bt (k + (k Nk) = 0 (3.12)

where

a:(2) as( 2Yak
N = k _ck vY/k (3.13)k k (2)/

Equations (3.6) and (3.8) are the electron equation of motion and

Maxwell's equations, respectively. Equation (3.10) is the small signal

dispersion relation. Additional information is provided by Equation

(3.12), which could not be obtained in Chapter II. It can be shown that

N
k

is the action variable for a system with periodic motion.4 8
Equation

(3.12) is therefore to be interpreted as the conservation of action.

3.1.2 Explicit Expressions for the Euler-Lagrange Equations

Explicit expressions for the single particle equation of

motion [Equation (3.6)], Maxwell's equations [Equation (3.8)], and the

equation for the conservation of action [Equation (3.12)] are required.

However, that for the action conservation equation is not given below.

It will be shown instead in Section 3.2 that the conservation of action

is equivalent to the conservation of energy and momentum. Since the

energy equation is more familiar to plasma physicists, the explicit ex-

pression for it is derived in Section 3.2. The explicit expressions for

Equations (3.6) and (3.8) can be found by making use of the second order

component of the Lagrangian function obtained in Chapter II.
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Let a plasma in a uniform static magnetic field oriented in the

z-direction be subject to a small perturbation. The zero order quantities

may then be assumed to be homogeneous. With the gauge chosen such that

= c = O0, averaging the Lagrangian functions in Equations (2.24) and (2.26)

gives the single particle Lagrangian and the Lagrangian density, respec-

tively, as

= 2 1 kID ,Ok2 + - q(Dk ) X B-+ q* (e + vXb)+ c.c., (3.14)k 2m k, k, OW~ ~ - Zk ~-k v Z~k

=2) 1 q d3v f * (ek+ v x ) + oi l- o + c.Co., (315)

where c.c. indicates complex conjugate and

qe: - iok k ' , b = -ik X ak , (3.16)

Dk +i[k, -k v cos( ) -k)], Xk :-kz + c '

( = 0o, ±1,+2,...). (3.17)

In Equation (3.17), c is the electron cyclotron frequency; $ and k

are the azimuthal angles of v and k, respectively, and the subscript 

indicates a component perpendicular to the static magnetic field (see

Figure 3.1). It may be seen immediately that Dk O is the Fourier trans-

form of the RHS of Equation (2.19). We note that we may set = 0 without

loss of generality. However, in nonlinear problems involving interactions

among many waves, all of the waves do not necessarily propagate collinearly,

i.e., the k's of all waves are not zero. In preparation for the

following chapter, we shall assume Ok £ 0 here. After substitution of
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x

'V

yFigure 3.1

Figure 3.1 Coordinate system for particle velocity
and wave vector.
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of Equations (3.14) and (3.15), Equations (3.6) and (3.8) become

D2 q [( -.v X v~]kO k kO k X m [( k (3.18)

71 X(7x) k ~ k(3.19)x x X ek) + ~k ek = (3.19)

where n (-kc/ck) is the refractive index vector and w is a vector

with its magnitude wc directed along the z-axis. The equivalent plasma

permittivity tensor, k, and the current density, jk' are given by

K - 1 + a-iqfd3vf 0 [ + k x (v X )] (3.20)

Equations (3.18) and (3.19) are the equation of motion of an electron and

the wave equation, respectively. It should be noted that these equations

are Fourier transforms of Equations (2.29) and (2.42).

3.2 Energy and Momentum Conservation

To each dynamical variable, y , corresponds a canonical momentum,

, defined by

az2
Ad apy -- b4/at) * (3.21)

However, no canonical momentum exists for the Fourier amplitude of the

dynamical variables ak or ak , because k2) in Equation (3.7) does

.j*
not involve ak or ak . Only the phase, ek has a canonical momentum.not a~k orW

This is the action variable, Nk [defined in Equation (3.13)].

According to Hamilton's theory, and with the use of Equation (3.11),

the generalized energy and momentum densities averaged in time and

space are obtained as

k2 = k k k = XNk' (3.22)
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G. =' G(2) G, = k N. (3.23)

If we differentiate S2) and substitute Equation (3.13), we obtain

k ~~~~~~~=NN v · k- . 4
as(2) a't ok as(2) = ak

=-k Ft ' _r. * )k k(r. --k (r.' (3.24)
1 1 1

By combining this with Equation (3.12), and the ray equation obtained

from Equation (3.4)
~k ad-- k

Et kr '(3.25)

we may express the total differentiation of (2) and G(2) with respect
k

to time as

~ cN) (.X w Nk)O,(3.26)at (%Nk) + ' (zk k (3.26)~~~kk

(kN)+-. (yk k iN)0.(3.27)at (ki k) + Fr k k) = 0 (3.27)

As in Equation (3.9), the partial derivatives in Equations (3.24) - (3.27)

merely indicate that the differential is taken with other coordinates

fixed. They are, however, considered as 'total' in Hamilton's theory.

Equations (3.26) and (3.27) are the equations for conservation of energy

and momentum, respectively. It is important to note that the use of

Equations (3.11), (3.24) and (3.25) reduces the conservation of energy

[Equation (3.26)], or momentum [Equation (3.27)], to the conservation of

action [Equation (3.12)].

From Equations (3.13), (3.15) and (3.19), explicit expressions may

be obtained for the energy and power flow:

kk 2p= 1 bk2 + 2 ek* EOI( a (dk) '+c-c-' , (3.28)
2 k ' 2 -k aw ) 4 + cc
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N = I e Xb* - ak (ek* 0. *e + c.c. (3.29)Y-k k k ~1 t 2 akk O-k .'k)+C' 

The first term on the RHS of Equation (3.28) is the magnetic energy in

free space. The second contains the electric energy in free space, the

particle energy, and the particle-field interaction energy. The first

term on the RHS of Equation (3.29) is the Poynting vector, and the second

is the power flow due to particles flowing out of a volume coherently

73with the wave.

3.3 Solutions of the Euler-Lagrange Equations

3.3.1 Perturbed Electron Trajectory

A difficulty in solving Equation (3.18) is that the x and y

components of the LHS are coupled. It may easily be seen, however, that

it can be diagonalized by a unitary matrix

~ 1 1 i 

U = I_ -i . (3.30)

New characteristic vectors for k are then (~k ~k ~ ) where

Ij
k= Z Uj tk (I = RLZ, j = xyz) (3.31)j uIj §k3

Since the y component is equal in magnitude to the x component, and

lags it by 900, k is a vector rotating in a right-handed sense about

the z-axis. Similarly is rotating in a left-handed sense. The

unitary transformation of Equation (3.18) gives

,7k Sk =k Ok' 2(3.32)
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where we have

Dk -1 Dko

B k = 

o

D 0 Dk

R

Mk = k

MZRMk

D

Dkil DkO O 0 2

0kl Dk, O

ML MRZ

k k

M MkZMk k

k k

The elements of M are given by

RR L* q t _ kO

M k m ( ok

k v
I£4

2Wk

kv
zz q I1 I o 6 

M =- - 1- -Cos 5~4J,I
Mk - m I k

RL = MLR*
Mk k

k v
q _ 1i

m 2W
k

exp [i(+0k)] I

ZR = MkZL*

Mk Mk

k v

= - q z I -i+)

q _ . z exp(i~k)
k

(3.35)

After some manipulation, the solution to Equation 
(3.32) can be

written explicitly as

(3.36)
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where the elements of the matrix G are
,Zk

RR LL* =q pon
k G-k m Wk 0,-1

I k v n
-2II Pn 1 exp [i(L4k

)
]

Wk 0,1 I Ij

GkZZ Pn L L [Pn exp[i(4 4 k) ] + P, 1 exp[ (-k) = m POO xo2
k

- _1, -1 +Il '" )1

GRL = GLR* q j n exk pvj
G - ~~pn expri(i4-4k)]

k -k m~D 2W
k

0,1

k v 

GZR GZL* -n
k. -k m kJ2 co -1,-i

RZ LZ* q kivz
G = G =_qzp exp (ik) ,
k -k m 4 2 Ck 0,-1

and P
,LO

is defined by

.00

.Pn Co j j (%k)j exp i[n( -Xk) + k

n=-c kno kn+ 

sin (4 Ik) .(3.38)

Here, Xk is written for k v /cW, and the following Bessel function

identity has been introduced:

exp (lXksinc) =
E

Jn(Xk)exp (ink) .(3-39)

n=-w

The subscripts on the G's in Equation (3.37) indicate the k or -k wave,

as shown in Figure 3.2. A change in sign of the subscript k makes sign

changes in ok, k and kz, but the sign of the azimuth, 4 k' does not

change.

Equation (3.36) describes the perturbed electron trajectory. It

may be seen that, if the rf electric field has a transverse variation

(3.37)
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Figure 3.2 Wave vectors of k and -k waves.
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(k £ 0), strong interactions occur between the rf field and the elec-

tron when the Doppler-shifted frequency approaches a cycloton harmonic.

3.3.2 Dispersion Relations

The unitary transformation of e = (eX ey ek) to

k = (e, ek, ek) reduces Equation (3.19) to

.e 0A * e = 0 , (3.4o)

where

P2_71/2 KRR
Fz j. k (')I n exp(i k)+K RZ

(nzn In2 exp(-if )+KLA= -( 2exp-2ik + RA= I ~/2)exp(-2ipk)+ Kk

-(n12/2)exp(2i k)+KkRL

22 LL-n4-4i /2+ K
z £ k

(rzil /F2) exp( iok)+KZL _)2 + KZZ
I k (3.41)(3.41)

Here, g and I are the components of the refractive index vectorz L

parallel and perpendicular to the z-axis. Using Equations (3.20) and

(3.36), and the relations

i /(X ~n X n
Jn( k) = Jn-l(Xk) - Xk Jn(k) = Jn(k) - Jn+l(k) 

2 xr
f exp[i(m~ + Xksin+)] d+ = 2v J-m (

X
k )

I

0

(3.42)

(3.43)

the equivalent permittivity matrix can be obtained explicitly as
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KRR KL 1 /< \2 / 1 r~o2 (k v ) 2 (kyv 1) WkO±VI JJ\

n

K 41-
k -k O(k) n< C k L n +'kn+l nl 'L - (kv)

K1 'z 1L (Th\ 2Ekzvk\ 2/ -/ ___ \2 ___

KRL LR*·z-) (k ) j2
k k i= - exp( 2 1ok)\ 1 n n+l 1Jn-1 nk k ( zv ~~~~~~~~~2kn+l ~kn-1 u~ 

Jn Jn+ 1)>
ak, n Clk, n+l 

KRZ ZR* ZL LZ*
k = Kk = Kk = Kk

~= _(E)2 exp1(iZk) k
I v

z 2 (k+nw c)kzv 

( xn ) i

'

E <k- 1 n r-2 2 JnJn+ , (3.44)

where N is the electron plasma frequency; < )denotes the mean value over

velocity space, and the argument of the Bessel functions is Xk . Unless

otherwise indicated, the summations over n contain all negative and posi-

tive integers. The small-signal dispersion relation is expressed by

det A = 0 [Equation (3.10)].

The solution of the perturbed trajectory of an electron [Equation

(3.36)], the dispersion relation [Equation (3.40)], and the equations for

the energy conservation [Equations (3.26), (3.28) and (3.29)] are very

complicated. Simpler forms can be obtained for the special cases of waves

propagating nearly parallel or exactly perpendicular to the magnetic field.

These two limits will be considered in the following sections.



3.4 Quasiparallel Propagation (k << k )

3.4.1 Perturbed Electron Trajectory

To first order in kl, Equation (3.37) reduces to

RR LL* q kI + 
GkR =GLk q t1+2dexp[i(+-mk )

]

+ 2 + exp[-i(-+k)]1

k v ak(ak- )-(kzvz) .

G
z Z

q 1 i+ ) 
k -k -k 2k, k)]

G Gk + q 2 k( -Ik)+}

+ ( +%-(kzz 2 exp[i(-
k )

~k,-2

RL GLR* q kv
GG -q ... exp[i(4)+))] 
k -k 2m %%, 0 %, 1

k v

GkZ GZL = q 2 1 exp(i2k) (3 +
Gk = -k IJ~ 1~kv(k_+k;

)

ep (-lk

We shall make use of these expressions in Section 4+.3.

In the case of all waves propagating precisely parallel to the

F'2 m aOk)k _2 2 

magnetic field (k = O), Equation (3.36) reduces to

kek g k mxekk1 

R L
RZ = LZ* q p + exp(i+k 

Gk Gk 4mflm I m 2 k e'(3.45)

We shall make use of these expressions in Section 4.3.

In the case of all waves propagating precisely parallel to the

magnetic field (k. = 0), Equation (3.36) reduces to

R q eR'k q eL

Z~~~~~~~~~~ e

z q ~~exp(-i+) + i q kvLexp(i~) + q e
z

(3.46)
Fk = -i 2 2 2k

m 'k, -1 m a~k, 1 mk

47



The displacement of an electron in the xy-plane coincides in direction

with the electric field of the right-hand or left-hand polarized wave,

which interacts strongly with electrons traveling such that ak-kzv 

W
c

. The first two terms of the displacement in the z-direction are

due to the Lorentz force of the transverse magnetic field (x v X bk )

However, averaging over velocity space causes these terms to vanish. The

average displacement in the z-direction is therefore only due to the

longitudinal plasma (Langmuir) wave, which interacts strongly with elec-

trons traveling with velocities close to the z-component of the phase

velocity, i.e., ak-k v X 0.

3.4.2 Dispersion Relations

To first order in k , the elements of matrix A in Equation

(3.41) become

RR LL 2 /X\2 /k z vJ

A =A- -1 A = ALR2 =0, 

ZZ ~ <aN °) > RL ALR* 

RZ ZR* ZL L*
k k k -k

nl. 2 k v k v2

= ' exp( ik) k- () exp( ik) - ( 2 2)> (3.47)

<- y " k, -" 

In the limit of purely parallel propagation (k = 0), the off-diagonal

_~~~~~~~
terms of A vanish. The nonzero diagonal terms are then the dispersion

relations of the right-hand and left-hand polarized transverse waves,

and the longitudinal Langmuir wave.74and the longitudinal Langmuir wave.
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3.5 Perpendicular Propagation (k = O)
Z

3.5.1 Perturbed Electron Trajectory

For this case, a rectangular coordinate system is more con-

venient than the rotating coordinate system used in Sections 3.3 and 3.4.

Putting k = 0, and transforming the electric field (e k, ek, ek) to

(ell, ek' ek), as indicated in Figure 3.3, reduces Equation (3.36) to

k~~~~~~~~~~~~~~~e 
L Z

g 1J

k

tI
Gk 11

-G Ik
k

Fi
Gill

k

Gk

Gk

k1

G~zGZZ-Gk

Gzz
Gk

[ k
Ie

ek

eZJ
k

(3.48)

where

Gkll = q P11k m __l1 
GZZ q pn
k m 0, -n

kv
/

Gk q II nG -G q± 0 ,-1e
k k m 2a~ 0,-I exL1OI-i("k)+ P 0 1 ePl~iIk)] l

Gkll = -i q POnI -~ -1 qk r 0, 1, -i'
GIli = GZ = °
k Gk =0,

kv =
-" 1 = -G'I + i -~-~ ~n exp[-i Po'-4 - en exp[ i(4 -4 kk k m 2w0 0,-i 0,1

Gil Z q k Ivz pn 
m k 1-1

n
and, similar to Equation (3.38), Po,1

pn () n c
P 

Z 
n; 

_~ 

0,~'V=E Dn .~-^ n,

k v
LZ q a z n

=_-i 
Cm POk 01,-1 '

(3.49)

is defined as

$n(xk) exp/i[n( -0k)+ Xksin(O-0k)]
1

(3.5o)
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It should be noted that superscripts ± and indicate the components

perpendicular and parallel to the wave vector, respectively. On the

other hand, the subscripts ± and 11 represent the components perpen-

dicular and parallel to the static magnetic field.

To see how each component of the rf field contributes to g in

Equation (3.48), let us first consider the effect of the longitudinal

componente
1
i related b

~~~~~~~~component ~(el). The displacement of E1 due toel is related by

EI = G U" el, the expression for which corresponds to that previously
Gk ek,

75
obtained by Crawford.7 This shows that a perturbation due to el becomes

k

very large when ak approaches (n + 1) wO , i.e., when the wave provides

space harmonics of the electric field over the direction of the electron

cyclotron motion. It may be seen that the contribution of el to .k -~

is due to an effect similar to the electron drift in a static magnetic

field (vD X B /B
2
) 76 The electric field component ek makes no

contribution to . The perpendicular components (el and ek) exert

effects on k similar to those of e . However, they have perpendi-

cular rf magnetic fields. Therefore, additional contributions are made

by the Lorentz force (c v X bk). This can be seen by noting that the

terms in Equation (3.49) giving these additional contributions all in-

volve k v /wk or k vz/u
k
. With the help of Equation (3.16), k v eI/k,

kivIek/w k and kIvzek/o k can be rewritten as vbj, -v bk and -vzb ,

respectively.

3.5.2 Dispersion Relations

For this case, the elements of matrix A are obtained from

Equation (3.41), with the base vector (ek k e k), as
kfell ) e ± as
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n
Ak~ ~ i~ aakn-11r1~,~

A = 1 - 22 - ( /k (k v) 2 2kkv 
k 1 U k \ Wn-l k ,n+l knk,nl n n-/

n

ZZ = 2 _ -)\2 2 (vz ))l
Ak Ib 1 + k2 -Ln ~n13knk 1~ - .L - k L + k~ kkn-l kn+lJ

A"- = 'A-
1' 2 (

Akl= -k liNc E nk n k,n-lDk,n+l
n

A ~~~~~kA±LZ <ZV* i cZ n
Ak =A kk k cok n knCk,n-l~kvn+l

Ali Z AZ1 ' E -, 1in (3-51)
k k~~~ E "k, n-l~k,n+l

n

The elements of the matrix A for perpendicular propagation have been

obtained previously by Baldwin et al.7 7 Their results can easily be

reduced to Equation (3.51) by making use of suitable Bessel function

identities [Equation (3.42)].

For an electron velocity distribution function even in v z, the

elements ALZ Z All and AZII all vanish, and e
Z

is decoupled from
k 'k k k k

ek and ek. The electric field ek is therefore a normal mode whose

ZZ
dispersion relation is determined by Ak = 0. In the cold plasma limit

k

this reduces to the well known dispersion relation of the ordinary mode.

For a nonzero temperature plasma, however, AkZZ has poles at = n22
k 

n = 1,2,3 ... , which lead to propagation in the neighborhoods of the

Z
cyclotron harmonics. For this reason, we shall refer to ek as the

ordinary cyclotron harmonic wave. The case where longitudinal waves

(ek) are almost normal modes has been considered in a great detail by

Baldwin et al.77 By this we mean that there exist solutions of the
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dispersion relation other than ek; namely A kllA A Ak = 0. ToAk k Ak k

a good approximation these are the solutions of A1111 = 0 and are
k

known as longitudinal cyclotron harmonic waves (or Bernstein modes).

For the special case of an isotropic Maxwellian electron velocity

distribution where

fo = nO (2' -T exp 2KT (3.52)

one can readily obtain, upon substituting the integration identity8

co 2 ~~2
xJn2 (X) exp (- ) dX = a exp(-a) In(a) , (3.53)

into Equation (3.51), the dispersion relations for the longitudinal and

ordinary cyclotron harmonic waves, respectively in the forms

2 exp(-k2 KT/mW) E n I (k2 KT/mIu 2 )
k2 2 
k KT/rm2 lkn wkn

c n=l

1 n2 2 2
k2 2 2 X In(k KT/m)

n=l
1 2=(-) ~1~ = 2d? exp(-k2KT/m~c~ ) ... 'k ( 3.54)

Dispersion curves corresponding to the first and second expressions in

Equation (3.54) have been computed by Crawford 7 5 and Lee7 9 , respectively,

for a range of plasma parameters. The second term on the RHS of the

dispersion relation for the ordinary cyclotron harmonic wave is negli-

gible except very near to cyclotron harmonics, i.e., at nearly all

frequencies the dispersion relation is essentially that of the ordi-

nary wave in a cold plasma.
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Chapter IV

MICROSCOPIC TREATMENT

II. NONLINEAR WAVE-WAVE INTERACTIONS

The linear theory of Chapter III assumes that an arbitrary perturbation

can be expressed as a superposition of non-interacting eigenmodes. A

characteristic result of nonlinearity is the occurrence of coupling among

these modes. If the coupling is weak, then arbitrary perturbations may

still be expressed approximately as a superposition of eigenmodes, but

whose amplitudes are now assumed to vary slowly in time and space. By

'slowly' we mean that the scale of the variation due to the wave-wave

interaction is much longer in time and space than the period and wave-

length of the disturbance. We shall assume that the ratio of this scale

is comparable to the ratio of the amplitude of a perturbation to that of

the zero order quantity, and denote them by a small parameter e. We

shall also assume that interaction occurs coherently, i.e., we shall not

treat interaction in the random phase approximation described in Section

1.2. We shall consider all possible types of three-wave interactions

in a warm, collisionless magnetoplasma, with an immobile ion background.

The procedure to be followed is similar to that used by Dysthe

in the analysis of nonlinear wave interaction in a cold plasma.3 5

The averaged Lagrangian is first obtained in Section 4.1 for waves pro-

pagating at an oblique angle to the static magnetic field. It was

demonstrated in Chapter III that action is conserved in the linear theory.

When nonlinear interaction occurs, action is exchanged among waves due

to the wave coupling. The action transfer equations and the coupled mode

equations are derived in Section 4.2. In Section 4.3, these equations

are specialized to the case of waves propagating nearly parallel to the
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magnetic field. In Section 4.4, the interaction among three cyclotron

harmonic waves is considered. Coupled mode equations are presented in

explicit forms suitable for computation.

4.1 Averaged Lagrangian Density

Taking the slow variation of wave amplitudes due to the mode coupling

into account, we may modify Equation (3.1) to the form

~(r~;t) = kZ ' (ervet) exp[iGk(r,t)] v

a(r,t) = Z Ak (er,et) exp[iek(r,t)] , (4.1)

where the slowly varying amplitudes, k (erv,et) and Ak (¢ret),

may be written in terms of the Fourier amplitudes of linear theory,

(v) and ak, as

(er,v,et) = ck(r,et)[_k(v) + e k(V)] ,

Ak(er,et) = ac(eret) ak (4.2)

Here ~k and Ok can be regarded as correction factors accounting for

the nonlinear effects, and

Ok = Ck I -k = * (43)

Consideration of the Lagrangian density expanded to second order

in the perturbations sufficed for the linear theory of Chapter III. In-

formation on nonlinear plasma phenomena is contained in the terms higher

than second order. For sufficiently weak plasma nonlinearity, the third

order term in the Lagrangian is much larger than those of higher orders,

so only the second and third order terms need be considered here.

The second and the third order terms in the averaged Lagrangian
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density are obtained by substituting Equation (4.1) into Equations (2.26)

and (2.28), and taking the average over a scale much longer in time and

space than the period of the fast varying quantities, but much smaller

than the scale of the slow amplitude variation due to nonlinear interac-

tion. All terms in Z vanish, except those satisfying the resonance
3

condition

ek + ek + ek,, = 0 , (4.4)

which implies the synchronism conditions

k + k + k" =0, ak + k + k =0. (4.5)

For notational convenience, we will define A(2) such thatk such that

= ̂ k~~~~~~~~
(2) A(2) + A(2) ) A(2) = A(2)* (4.6)

k -k -k k (4.6)

Although Sk is always a real quantity, Ak is not necessarily real. To

first order in e, the part of the averaged Lagrangian density governing

a weakly nonlinear plasma, i.e., the sum of the second and third order

terms, is given by-

E 12 A 2+ '" - -

+

a.] Ak2)

k k

~+ e E etkk' exp[i(ek+ek'+ek")] , (4.7)

k+k +k =O

where the A's are given by

56



A(2) = fd3vfo AP(2) + AF(2) Akkkn= d 
P (kkk)Akk tk / f0Ak//

AP(2) m k, A (Dk ) * X B - q * ( + v X 

kF(2) 2 Lk Sk |AF(2) =1 'eo l12 _ 1 lb J2
k k e0 2tL0

^P( 3,).
kk k 2 k(k,Ok) k' 

X
" 

+
i

In Equation (4.7), the term involving

first order equation of motion.

(4.8,

pk has disappeared due to the

4.2 Action Transfer and Coupled Mode Equations

Variations of £ in Equation (4.7) with respect to 8kekt and Ok#

give

- (Cl k) + - ( C k) , (2N( 2 k ) + (2 I I )2 N_~_t 73 r k) =- 6t k)+ar (Zklc 1)N

=bt(' N) br (+ '0 O .= (=i k'Caki
kk Iki

3Akk)k,, + c.c.)

(4.9)

where the summation is understood to contain all permutations of k,k',k".

8
The first two equations are the so-called Manley-Rowe relations,8

giving information about the relative rates of transfer of action den-

sity (Ink,2Nk) between the waves. The third equation gives the direc-

tion and the absolute value of the rate of transfer.

Variation of £ with respect to a-k gives
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iNk(Lt k + r) k = C-k ' -k A kk-k" (4.10)

~~~ ~kok ,k

Similar equations for the k t and k -waves are derived from the a kI

and a _k variations of £, respectively. Equation (4.10) is the

coupled mode equation. It should be noted that the action transfer

equation [Equation (4.9)] can be derived from the coupled mode equation

by using Equation (3.12).

Since Nk, Zk and A(k3)kt_k are known for any wave, Equation (4.10)

can be solved in principle. The expressions for Nk, vk and A ( 3 ) 'k" Ki
k -k ,-k

in terms of field quantities are extremely difficult to evaluate in

general,as indicated in Chapter III. A simpler form of Equation (4.10)

is obtained in the limiting cases of waves propagating either nearly

parallel or exactly perpendicular to the static magnetic field. These

will be considered in the following sections.

4.3 Quasiparallel Propagation (k << k z)

Substitution of Equations (3.36), (3.45) and (4.8), and some

tedious but straightforward algebra, reduces Equation (4.10) to the

following form first order in k ,

iNk( + k * )ak

/ Z Z* Z* Z*Z* R L* R* Z* L R* L* Z*
-k '-k . \Qkkkek k ek ek+ Qkk'k" ek eke ek+ Qkk'ke k k ek

k k ', k"

RR L* R* R* LL R* L* L* RZ L* Z* Z* LZ R*Z*Z*\
Qkk k'ek ek/ek/ + Qkk 'k ek ek ek + Qkk tkek ek ek + Qkk'kek k e k e

(4.11)

where the Q's are given by
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R L*
Qkk tk Q-k-k -k =

Z~ e~
0
q k"2

qkk 'kf 
=
-i 2-- zG)

RR LL*
kkk Qk-k-k t-k

k tv2
Z L

2%_

k k'
Z + -Z

12 2\;o kO .k,

K a 'o
ok,o;o

i e0q

,r

k" 2 ,kLaNexp( i4k/)K 1

ai /-k

1 
+ kkk v

Z Z Z 1.

+ k/ I +

2±

+ki(J~,2

1 1 1
+ +

a~k k,2 "k,llk/,O k,2 k',-l

1 1 1

k, 1k,2 kl k',o k,2 .k-l

1

1

%.k,1

RZ = QLZ*I =
Qkk 'k k = -k

k/o +

+

Ck2-1

2ink, 0
O'k, 2

kOa+k, 1
a~k"Oco" +

+ - (kv )2 kO+kO
2~~~~'' I 1 \)k- 1kl

"k 'o2

k'v
+ Z Z

+kI0

ie0q k±LmN
e x p L ]'Uk/J ) /

42 "k \ k k~l"ko

k v
z Z

%k -1/

+ 1 k 2 k__ _ 1 / 1
2 z Z 1 2 z . ,,

I U U~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+,O-k,kOal , -k

+ 2/ 1 1

+k% ~% o'- %-. _.
k~~~ 1~~,ok,- ,l kl

1
+

2
nk,ok,I.k%;o

+ k k'v 2 F 1 1

L kO k, 0K -1

k klOk,-I l \/ k

+ + 2

2~~~~~
XkO) X"k, OGk ak l/k,

// U_o 1 l,2 ' (Ckk,-l

(~k , O1

+ I 1
\%k' o /

(4.12)
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For illustrative purposes, the synchronism relations [Equation (4.5)]

may be written as

k = k + k. , c = X + cX.
"p ~s -i p s 1 (4.13)

In conventional parametric amplification terminology, the highest fre-

quency component is called the 'pump' wave, and the lower frequencies

10
the 'signal' and 'idler' waves. With the use of Equation (4.13), the

coupled mode equations for all possible cases can then be written in the

form

IU(d + v d) E
p ,--,p dr p

IV d + V d ) e
s + v Zs dTr s

W (d W V d) W

from Equation (4.11), where

coupling coefficient CUV
W

* VW)
= CUVW Is 

= CUEw g* gUp ,

=Cov ~,v* ~U (4
=5W s p , 

U, V and W can be either R, L or P; the

is the proper linear combination of Q's

in the RHS of Equation (4.11); vk (U = R,L,P) is the group velocity of

the U-wave, and IU and the slowly varying electric field, Pk, are

kdefined by
defined by

I~mi UU Nk U U

I e i ' 1 k , (¢r,¢t) = ck(¢r,¢t)e ,

(U = R,L or P;

k = sli or p).

(4.15)

Z by
Here ek must be replaced by ek when it represents the electron

plasma wave. The explicit expression for Ik for right-hand polarized,
k

left-hand polarized, and plasma waves can be obtained from Equations

(3.28) and (3.44) to yield
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I = Ik = 2ie +2 2 
Mk - k 1 +i +2i¢0

Ik = 2i 03>N (4.16)
,0

Equation (4.11) indicates that nonlinear interaction is possible (i)

among three plasma waves, (ii) among one plasma wave and two circularly-

polarized waves, (iii) among three circularly-polarized waves, and

(iv) among two plasma waves and one circularly-polarized wave. The

problem now remaining is to find the coupling coefficient in the

coupled mode equation [Equation (4.14)] for each of these cases:

Case (i) (Cppp): To first order in k , all terms but the first

one on the RHS of Equation (4.11) can be dropped in this case. The

coupling coefficient then becomes

Cppp = -Qpsi (4-17)

-pc s5 i

where Q-psi is Qkk'k" in Equation (4.12), with k = -p, k = s, and

kf = i. Since Qkk'k" does not involve k, the coupling coefficient

remains unchanged for waves propagating exactly parallel to the mag-

netic field.

Case (ii) (CRRP, CRPR, CLLP, CLPL, CpRL, CpLR): In this case, only

the second and third terms on the RHS of Equation (4.11) contribute to

'the coupling coefficient, which becomes

CRRp(psi) = CLLp(-P -S,-i) = (QR -psi Qsp-i ) (4.18)

CpRL (is-p + Qsi-p ) (4.19)PRL 15-P Si-p
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CRPR, CLp
L

and CpLR are obtained from CRRP CLL
P

and CpRL, respectively,

by interchanging s and i. As in Case (i), the coupling coefficients

are the same for k - 0 and k = 0.
1 1

Case (iii) (CRRR, CLLL, CRRL' CRLR, CLLR, CLRL): CLLL is not of

interest because the topology of the dispersion characteristics does not

allow the synchronism conditions of Equation (4.5) to be satisfied.2 7

To obtain the coupling coefficients, the g 's have to be eliminated

from the RHS of Equation (4.11) by use of the small signal wave equation

[Equations (3.40) and (3.47)],

k Azz Zk +A L) (4.20)
k

When this is done, the coupling coefficients CRRR CRRL and CLLR are
CRRR, CRRL an LLRar

found to be

RRR -psi Z (Qpsi + Qs-pi '1~~
1 p~

i
LL p (L

RRL(PSi) = CLLR( P. si) = 2 si- p AZZ Qsi- p + Q (p)[~ ~ zP (4.22)

ZZ RZ ZR
where Ak , Ak and Ak are given by Equation (3.47). The coupling

coefficients CRL
R

and CLRL are obtained from CRR
L

and CLLR, respec-

tively, by interchanging s and i. The coupling vanishes as k 0

in this case.

Case (iv) (CRpp, CLpP, CpRP, C ppR, CppL): All terms on the

RHS of Equation (4.11) must be changed into the form involving two

gZ 's with the use of the wave equation [Equation (3.40)]. This yields
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CRpp(P,s,i) = C pp(-p-s-i)

= [RZ . -
a Q-psi

s, i 

CpRp(P, S, i)

AZR ZR 1
s R L p Z
RR (Q-psi + Qs-pi ) AZZ Qsi-p J (4.23)
s ApS p j

= CpLp(-P, -S -i )

AZL
1 L
LL(Qsip
AlI

+ Qis ) - p 1
1AZZ i-p

s 

(4.24)

where Ak
R R

k ~

may obtain

changing s

ALL ARZ ZR adZLAn AZ y A and Ak are given by Equation (3.47). We
k , k Ak k

CPP
R

and CppL from CpR
P

and CpLp, respectively, by inter-

and i. The coupling vanishes as k - O.
I

4.4 Perpendicular Propagation (k = O)

As illustrated in Chapter III, for propagation oblique to the static

magnetic field the polarizations of normal modes are extremely compli-

cated. We shall study the relatively simple case of an electron velo-

city distribution even in v . In this situation, el and ek can be
z k k

considered as normal modes. These were introduced and termed the longi-

tudinal and ordinary cyclotron harmonic waves, respectively, in Section

3.5.2. As remarked at the end of that subsection, thermal effects on

the propagation of the ordinary cyclotron harmonic wave are generally

negligible. Therefore, for the coupling coefficients for the interaction

involving the ordinary cyclotron harmonic wave, we shall approximate

the wave by the ordinary mode for a cold plasma (see end of Section 4.5).

Since the phase velocity of the ordinary wave is much greater than

the particle velocity, Equation (3.48) becomes
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ke = Gk
' I ek I k 

=
Gkl' el = G

k
ek (4.25)

where the G's are given by

Jill q pn q n ZZ q

k M-1 k m -1,1 , G = i m 1 G(4.26)

Equation (4.10) is then written as

iN ~ ~ ~~ k"~~0 11*0*

i~k(.+ . ~~c~= c~lakl I/e e ,e l+ QkkI// e ek lekilk(aa+Vk a -i ak = a k' k" E (Qktk#k tk tk"+ Qkktk/'k O, O,

k~ k [k

(4.27)

where the superscript Z has changed to 0 to represent the ordinary

cyclotron harmonic wave, and the Q's are given by

11~~ ]
Q l= - ~ n qk" KEGi co(41 /)-G'Ll sin(4-k]kk k 2G-k cos(~k_-k# -k i /'

x [Gil cos1 kG,1k// - sin( kI4kn[ -kt cos(ik'_k/') -k - k s k in(%k-% >

2
Q 0 VD / i [r - Cs+ -~lsn
kk 'k 2 2 +_kO (k 'k k 'k-kfl -k (+k-+k'f

(4.28)

Substituting Equations (4.5) and (4.26), using the Bessel function iden-

tities of Equation (3.42), and noting that

(Dk,O -ik,n) exp~i[n(~-4k) + Xksin(+-+k)]} = 0 I

2i

f expki[n + Xksin(+-k) + Xk,sin( -"k)]d+ = 21Jn(Xk/,)exp(ikn
k,), (4.29)

0
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we can reduce Equation (4.28) to the form

i Cq kf 2 E~)m+n (Jm(Xk)Jn(Xk')Jm+n(Xk/'))
kk k -q "I (-) kmak'n

m,n

exP[i(k-+k,,l) ] exp[-i(k+k k )1

Dk, m+l k, m-1

(exp[-i(k '_-k/' )
] exp[-i(+k -k / )]/

x "k'n+l 1+ 'kn-l exp~i[m(k-+k'#)+n(~k'-Ok")]}'

2 2
k ekq II 2_c_\ (jn(Xk))
Qi k ) 12-n -s--I(2 ' ..)

<

n
k

k )>

n

exp[ i(k-k + exp[-i( k-[ k k ) ](43
]x "k, n+ 1 + "'k~~~~~~~n-1 ~(4.30)

As in Equation (4.10), the summation in Equation (4.27) contains all

permutations of k, k', k , while those in Equation (4.30) are double

summations of m and n over all positive and negative integers.

Equation (4.27) can be written in the form of Equation (4.14) with

Il= En0k 04 ~+
= iD \,n-l k,+l Lk,n-l'k,n+l

0 i k--
I = i [2 - )] (4.31)

These result form substitution of Equations (3.28) and (3.44)

into Equation (4.15). Possible interactions are, from Equation (4.27),

(i) among three longitudinal cyclotron harmonic waves, (ii) among one

longitudinal and two ordinary cyclotron harmonic waves. The coupling
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coefficient for each of these cases can readily be obtained from Equa-

tion (4.27):

Case (i) (C ): In this case, only the first term on the RHS of

Equation (4.27) contributes to the coupling coefficient, which becomes

C =pis' (4.32)
pi s 

-p, s, i

II
where Qpis is Qkk'k" with k = -p, = s, = i.

Case (ii) (C 0 0 , C010 , COO ): In this case, only the second term

on the RHS of Equation (4.27) contributes to the coupling coefficient,

which becomes

C1
0 0

0 ps' (4.33)C~~lOO = E ~~Q-psi'
s5i

C 0 0 Q 0 (4.34)
10= E Qsi-p '

-p, i

We can obtain COOl from COiiO by interchanging s and i.

The infinite series forms of the Q's in Equation (4.28) are

impractical for computation. Alternative expressions for them are

obtained in Appendix B.

4.5 Discussion

We have been following essentially the averaged Lagrangian method

developed in cold plasma wave theory. Since all variables are de-

fined in phase space, the method is modified for warm plasma by

adding the correction factor Pk, which accounts for nonlinear
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effects on velocity. However, it has not produced any additional

Euler-Lagrange equations because the term involving X has dis-

appeared from the averaged Lagrangian in Equation (4.7).

General solutions of the coupled mode equations [Equation (4.14)]

are complicated, but can be obtained in terms of elliptic integrals.

For the special case where one wave is considerably stronger than the

other two waves, however, solutions can be obtained in a simple form.

If the pump wave is very much stronger than the signal and idler, then

V W
the rate of change of < is of order Ps Pi, and p may be assumed

p ~~~Si p

to be constant. The signal and idler waves are determined by the

equation

t+ vs * ) + v. i T dr- Y2] .si = 0 (4.35)

where the growth (or decay) rate, , is given bye II.Y sgiven by (I CUVW 
p

/s 
i

3·

V W
The electric fields e and ei are either growing or decaying, depending

5 1

V W*
on the sign of IVIi . From Equations (3.22) and (4.15), this sign is

Si

V W
the same as that of [wsai(sRi] where s and i are the energies of

the signal and idler waves, i.e., e and eW are exponentially growing
5 1

VW
(decaying) when [dsCiIs ] > 0 (< 0). The growth (or decay) rate can

be calculated from Equation (4.35) for a specific unperturbed electron

velocity distribution, and wave numbers and frequencies satisfying the

synchronism conditions.

Table 4.1 shows all possible nonlinear interactions among normal

modes propagating nearly parallel or precisely perpendicular to the

static magnetic field. The third column of Table (a) indicates the
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Table 4.1

All Possible Nonlinear Interactions Among Normal Modes

(a) Quasiparallel Propagation

Previous Investigation

cold plasma or
Involving Waves Pump-Signal Coupling microscopic hydrodynamic

and Idler for k .=0 treatment hydrodynamic
i approximation

(i) Three plasma waves P P,P yes Refs.28,33,34 Refs. 17,20

(ii) One plasma wave R R,P
and two circularly- L L,P yes Refs. 33,34 Ref. 26
polarized waves P R,L

(iii) Three circularly- R R)R no Ref. 34 Ref. 27
polarized waves R R,L

L R,L

no None None
(iv) Two plasma waves R PP None

and one circularly- L P,P

polarized wave P R,P

P L,P

(b) Perpendicular Propagation

Previous Investigation

ePump-Signal microscopic cold plasma or
Involving Waves anp-igl hydrodynamic

and Idlert treatment approximation
approximation

(i) Three longitudinal

cyclotron harmonic II 1v Refs. 32,80 Ref. 25
waves

(ii) One longitudinal 0 11,O Refs. 30,65 Ref. 22
and two ordinary

cyclotron harmonic

waves 11 OO None Ref. 22

*
(For the electron velocity distribution function even in vz. Inter-
actions between parallel propagating waves and perpendicularly pro-
pagating waves are not included.)

t(l1: Longitudinal cyclotron harmonic wave - extraordinary wave in
cold plasmas,

0: Ordinary cyclotron harmonic wave - ordinary wave in cold plasmas.)
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interaction in the limit of k = 0. As shown in Section 4.3, when

three plasma waves or one plasma wave and two circularly-polarized

waves are involved, interactions still occur for all waves propagating

exactly parallel to the static magnetic field, and their coupling co-

efficients are the same as those for quasiparallel propagation. The

remainder of the interactions in the table vanish for exact parallel

propagation because their coupling coefficients are first order in k

The last two columns indicate the interactions previously inves-

tigated by other methods for cold or warm plasmas. The coupling co-

efficients obtained in Section 4.3 for the first five situations in

Table (a) are identical to those derived by Kim, Harker and Crawford.3

The first case in Table (b) involving three cyclotron harmonic waves

was first investigated by Harker and Crawford3 2, and later by Wagers.80

The former considered collinearly propagating waves (+k = ok' = k" ) '

The latter generalized the analysis to allow for waves propagating at

arbitrary angles in the plane normal to the magnetic field (+k~ $k'; kk>).

The coupling coefficient C in Equation (4.32) is in a form different

from those obtained by these authors. While they could not derive the

Manley-Rowe relations analytically from the coupled mode equations, the

present coefficient is written in a form symmetric in -p,s,i and

automatically satisfies the relationship; a useful indication of the

power of the Lagrangian method. The coupling coefficient CO o has

been derived by Boyd and Turner63 for a Maxwellian velocity distribution.

Their result follows readily from Equation (4.34).

Table 4.1 also shows the new interactions obtained in this chapter.

Those involving three circularly-polarized waves are the combinations

of R-R, L and L-R, L. Typical synchronism conditions for these inter-

actions are shown for a cold plasma in Figure 4.1. For a warm plasma,
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(a)

Figure 4.1 Synchronism conditions

for nonlinear interaction among

three circularly-polarized waves

in a cold plasma. [Cut-off fre-

quencies WUL - ( + 2/4)/2

xc/2]. (a) Pump R-signal and

idler R,L; (b) Pump L-signal and

idler R,L.

(b)
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thermal effects make only a very slight difference to the shape of

the upper branch of the R-wave and the L-wave branch. The lower

branch of the R-wave can be strongly modified, and the three inter-

acting modes in Figure 4.1(a) can all be in the first quadrant of the

w-k plane, as shown in Figure 4.1(b)

As shown in Table 4.1, the interaction involving two plasma waves

and one circularly-polarized wave has four cases: R-P,P; L-P,P; P-R,P;

and P-L,P. The topology of synchronism conditions of the L-P,P case is

illustrated for a cold plasma in Figure 4.2(a).Figures 4.2(b) and (c)

shows synchronism conditions of the R-P,P case for a cold plasma. When

U < 2 Ž (or xc < 3Xn/2), the right-hand polarized wave is on the

upper branch while it is on the lower branch when co
c

> 2W
N

. As men-

tioned above, the lower branch of the R-wave can be strongly modified

by thermal effects and the interacting R-wave can always be on the

lower branch. The last two cases (P-R,P and P-L,P) have no solution

in cold plasma theory since the synchronism conditions obviously cannot

be satisfied. For a warm plasma, the whistler and the plasma waves

can be unstable for a nonMaxwellian-velocity distribution. The possi-

bility also exists of these waves propagating with either positive

or negative small-signal energy. It would therefore be of great

interest to make further detailed studies of the R-P,P and P-R,P

cases to determine the relative growth rates of the small-signal and

nonlinear instabilities, and to see which should dominate in experi-

mentally relizable situations.

A new interaction of perpendicularly propagating waves treated

here is the case 11-0,0. Figure 4.3(a) shows its synchronism condi-

tions for the O-wave representing the ordinary wave in a cold plasma.
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Figure 4.2 Synchronism Conditions for interaction among one

circularly-polarized wave and two plasma waves.
(a) Pump L-signal and idler P,P; (b) Pump R-signal
and idler P,P for c c < 3aN/2; (c) Pump R-signal
and idler P,P for x

c > 2NN.
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Since the dispersion curve of the ordinary wave is inside the light

cone, so is the pump wave as shown in the figure, where the 11-wave

is non-dispersive. Unless the magnetic field and plasma were homo-

geneous, synchronism would not be maintained. Furthermore, because

of the zero group velocity, collisional effects exert a strong

influence and may invalidate the theory. Therefore, this region of

the 11I-wave is not of great interest. Figure 4.3(b) shows the

synchronism conditions for the O-wave representing the ordinary cyclo-

tron harmonic wave. In the region satisfying the synchronism con-

ditions, the waves are dispersive. How good our approximation is for

Co1100 [Equation (4.33)] open to doubt since we assumed cold plasma when

simplifying it. The whole question is probably somewhat hypotehtical

in practice; the interaction would be extremely difficult to detect

experimentally because the propagation bands of the 0-Owave are very

narrow.79
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Chapter V

HYDRODYNAMIC APPROXIMATION

The hydrodynamic approximation for plasma wave propagation is

appropriate when the thermal velocities of the charged particles are not

comparable to the wave phase velocity. The plasma can then be described

in terms of macroscopic quantities such as its density, drift velocity,

pressure, etc. These quantities are related to each other by moment

equations obtained by carrying out the velocity integration of the Vlasov

equation. If the adiabatic assumption is made, the infinite set of

moment equations so obtained can be truncated at the third. The first,

second and third moment equations, known as the continuity, momentum

and state equations, respectively, together with Maxwell's equations,

then provide a closed set of equations.

It should be possible to describe the macroscopic properties of

plasmas by Hamilton's principle by formulating a suitable hydrodynamic

Lagrangian. In this chapter, such a Lagrangian will be derived by two

different methods. In the first, the hydrodynamic Lagrangian density

is obtained for the momentum equation and Maxwell's equations by inte-

grating the exact microscopic Lagrangian of Chapter II in velocity

space. In applying Hamilton's principle, the continuity and energy

equations are then used as subsidiary conditions. To describe linear

propagation and wave-wave interactions, this Lagrangian is expanded

about the equilibrium state. Because of some mathematical difficulties,

the expansion will be carried out here for only three illustrative

cases: one-dimensional compression parallel to the static magnetic field,

two-dimensional compression perpendicular to it, and three-dimensional

compression. In the second method, the expanded hydrodynamic Lagrangian



is obtained directly from the expanded microscopic Lagrangian of

Section 2.2. In contrast to the first method, this does not require

any subsidiary condition, and avoids the mathematical difficulties

involved in the expansion of the Lagrangian.

In Sections 5.1 and 5.2, the Lagrangian is formulated by the

first method. The second and third order Lagrangians are then obtained

for the three illustrative cases mentioned above. The second method

is presented in Section 5.3. Section 5.4 describes how the ion

contribution modifies the first order Euler-Lagrange equations and the

coupled mode equations. In Section 5.6, the nonlinear interaction of

two electron plasma waves and an ion acoustic wave, and of an electron

plasma wave, an ordinary wave and an ion acoustic wave, are studied as

an application of the Lagrangian by the first method. The application

of the second method is carried out in Section 5.6, where dispersion

relations are obtained from the second order Lagrangian of the second

method and are compared to those in Chapter III. As an example of

nonlinear wave interaction, the interaction of an Alfven wave with two

electron plasma waves is examined.

5.1 Formulation of the Lagrangian Density - Method I

The hydrodynamic equations obtained by integrating the Vlasov equa-

tion [Equation (2.6)] in velocity space with the adiabatic approxima-

81tion are

dn
-- + n u = 0dt-. O (5.1)

du q
dt+ s = (E+ u X B) , (5.2)dt - M m - -
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ds(.q
= - s X B + S* - u - transpose (5.3)

4-b

where the local plasma density, n, the pressure tensor, P, and the total

time derivatives, d/dt, are respectively defined by

n = ff(rvt)d3v P - mwwf(rvt)d3v t + u -, (5.4)

and the tensor s, and the random velocity, w, are related to the pressure

4&

tensor, PI and the drift velocity, u, respectively by

#-6

P

The diagonal elements of are the squares of the thermal velocities

TMaxwe ions a eo c o ns stitute a complete sares t o f e equat ion s describing

adiabatic processes in plasmas in terms of macroscopic quantities. A

Lagrangian for the hydrodynamic approximation should include these equations.

Analogously to integrating the Vlasov equation in velocity space in

order to obtain the moment equations, we may attempt to integrate the

microscopic Lagrangian in velocity space to obtain the Lagrangian for the

hydrodynamic approximation. Transforming the Lagrangian coordinates

(r',v') to Eulerian coordinates (r,v), and integrating Equation (2.2)

over the velocity, yields

nm 2 nm O A\ 2 1 2
£ = u + Tr + nq( - A) + 2- C + t X A) (5.6)

However, it should be remembered that the conservation law in phase
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space was used as a subsidiary condition in connection with Equation

(2.2). The information contained in the Vlasov equation has therefore

been lost from this integrated Lagrangian. It has been shown in other

Stanford work by Peng3 that changing the sign of the term Tr s is

necessary to obtain the required Lagrangian,

nm U2 _nm * 62 2
2 2 Tr s + nq( - u A) + 2 ( + t) 2 (XA (5-7)

It is easily seen through the use of Equations (5.1) and (5.3) as subsi-

diary conditions, that the variation of this form of £ with respect

to r gives Equation (5.2). As in Chapter II, the variations of p

and A give the Maxwell equations.

5.2 Expansion of the Lagrangian Density

To follow the procedure of Chapters III and IV for small-signal wave

propagation and wave-wave interactions, it is necessary to expand the

Lagrangian. As in Chapter II, two corresponding cells satisfy

ad0 
+

n(r,t)d3r = no(O)d3r (5.8)

where no(,O) is the equilibrium density. For a small perturbation,

the local drift velocity and the tensor s of the perturbed cell may

be expanded about the cell in equilibrium (see Section 2.2) to give

u(rt) = u(C) + (~ot) , = + (U O) (5.9)

s(r,t) = s(0) + l(Ot) + s2 (ot) + s3( ot) + ... (5.10)

where U is the drift velocity of the cell at ,O0 and the subscripts

on s indicate the order in g. The second relation in Equation (5.9)

has been obtained by an argument similar to that given in Appendix A.
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The expanded Lagrangian can be obtained from Equation (5.7) by ex-

panding Equation (2.14) about rO in a Taylor series, and substituting

it together with Equations (5.8) - (5.10). However, it is still re-

quired that s be expressed in terms of By q 1 and a. In principle,

this could be done by expanding the ten simultaneous differential

equations expressed by Equations (5.1) - (5.3) (one for n, three for

u, and six for s) to the desired order in perturbation. In practice,

obtaining the solution for s is extremely complicated. For s3, for
9.n

example, the number of differential equations to be solved simultaneously

after expansion is 26 (2 for n to the second order, 6 for u to the

second order, and 18 for s to the third order) The solutions for s

8k
are very much simplified for the special cases considered by Delcroix,8

i.e., linear adiabatic compression parallel to the magnetic field, cylin-

drical adiabatic compression perpendicular to the magnetic field, and

spherical adiabatic compression. In what follows in this section, we

shall restrict the discussion to these three illustrative cases.

5.2.1 Linear Adiabatic Compression Parallel to the Magnetic Field

Let the static magnetic field be uniform and directed along

the z-axis; the velocity distribution at every point have rotational

symmetry about the z-axis, and all perturbations be independent of

x and y. Thus,

B z= B0 Bx = By = 0 x y =y x =y = 0~~~~~~x y

s s s s s s s 0 (5.11)
xx yy zz xy yz zx

where s and s can be related to the electron thermal velocity,

and temperature, T by82Zt and temperature, T, by
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2
V2 KT KT
vt± ± 2[]s t _ s = v t21=m (5.12)

£ 2 2m t {} { m'

This case is the same as that of electrostatic waves in a uniform plasma

propagating parallel to the magnetic field. The six equations for s

in Equation (5.3) reduce to two,

ds d s
-L~~~~_ = o s, 

dt dt 2 (5.13)

Expansion of Equation (5.13) is carried out in Appendix C.

Substitution of Equations (5.8) - (5.10), and (C.8), into Equation

(5.7) gives the second and third order Lagrangians as

£ 0~-2 -- nms2 -0 2nom , - 3 n z 

2

- -n ~ez + Te
z2 2 _ z 2 no0 s /-- nq z 2 

( \z)3 noq 2 bez (5.14)
£ =2nms \~~~~z / 2 ~~~ (5.14)£3 = nosII ~'"-I -2 ~z b

where e is given by Equation (3.16), and the subscript 0 has been

dropped from s . By summing £2 and £3' the averaged Lagrangian can
{I

be written as Equation (4.7) with A2) and A(kk)k given by
an kk tkI

A(2)=_ n~m 2k 2 C e 1
Ak~~~~~~~1 2 ~k +0(3) fl ~ ~z ¢0 z g~~_nqe + O-qe{

A(k3), = i2n0ms k k'k gkg " + k (5.15) kk k 2 nz z z ekkzk 2n (5q15)

where "k has been written for ack - k U + s 
c

. Here it should be

noted that = 0 implies U = 0, from the zeroth order of Equation

(5.2) for a uniform plasma in equilibrium.
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5.2.2 Cylindrical Adiabatic Compression Perpendicular to the
Magnetic Field

For compression purely perpendicular to the magnetic field,

we may put

\·

=s =O0~Z z = Z=° axz yz

B= B + b , B = B= 0 . (5.16)
z 0z x y

If we further assume a symmetric compression about the z-axis, we may

also put

s = s - s , s - s , s = 0 . (5-17)xx yy 1 zz 11 xy

The six equations for s in Equation (5.3) then reduce to

d (s ds
dt (n ) 2 II = ° ' (5.18)

dt n ~~~dt '

B ~x ~ ~y B ~x ~ ~y
ax - ay by -ax (5-19)

Expansion of Equation (5.18.) is carried out in Appendix C.

Of Equations (5.16) - (5.19), we only need Equation (5.18) for the

expansion of the Lagrangian in Equation (5.7). Let us consider the

implications of Equations (5.16) and (5.19). In Equation (5.16), the

second relation implies that the waves under consideration are propa-

gating perpendicular to the magnetic field. Furthermore, since the

time-varying magnetic field of the wave is in the z-direction, it can

be seen from Equation (3.16) that ek is polarized in the xy-plane.

It follows that there is no time varying displacement in the z-direction.

Equation (5.19) expresses the rate of strain relations, 85 which become
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agx/bx = bgy/by and 6gx/by = -bgy/6x for the steady state. They

imply that the motion due to a wave is of uniform dilatation in

the xy-plane with rotation about the z-axis.8 This motion is only

possible for a wave whose frequency is well below the cyclotron fre-

quency, so that the displacement of a fluid element due to the wave

is sufficiently randomized by the gyration for symmetrical compression

to be approached. A wave satisfying both Equations (5.16) and (5.19)

is the compressional Alfven wave with a frequency well below the ion

cyclotron frequency, and propagating perpendicular to the static magne-

tic field.

Although compressional Alfven waves propagating perpendicular to

the magnetic field can satisfy the synchronism conditions for wave-wave

interaction among themselves, we shall only consider the second order

Lagrangian here. Substituting Equations (5.8) - (5.10), and (C.10), into

Equation (5.7) gives the second order Lagrangian as

no 'M 2 2 bX 
b

y= - ' b\ xby~ b y IJ£2 -2 noms (V * ±)2 x yx Yy + 

- n~q.O2 1 a2
-n0q eX + 

n

2
q

X + e2 _ - b2 (5.20)
0 -. L 2 ZI Z.L XB T 2~0oz

where the subscript 0 has been dropped from B and s . The averaged

Lagrangian then becomes

(2) -nomS2 ± ,.,k 2

* n0q *k,0 Ik . 12

-q~k0 ¢0 * 2 ek1 z12n , . ek+ i Ix+ iekI lb (5.21)
20 L
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5.2.3 Spherical Adiabatic Compression

In this case, even though perturbations occur, the plasma

preserves isotropic properties. The elements of s can therefore be

written as

s = s =s s , s s = s = 0 (5.22)
xx yy zz xy yz zx

Equation (5.3) then yields

dt = 0 , (5.23)

ax a y az 3z a z a x
=x -y = -z ' by +- X = a-- + by = ax + az - (5.24)

__ _ -~~~ - +-----+-~~~~o . (5.24)

If the first relation of Equation (5.24) is identically zero, then

Equation (5.24) describes a combined translation and rotation as in

the case of rigid bodies.87 The first relation is not zero in general.

This implies the addition of a uniform extension (or contraction)
8 6

to the translational and rotational motion.8 7 Fluid motion of a uni-

form extension (or contraction) is possible in a plasma in which

elastic collisions conserve energy and momentum, and in which the

frequency of the wave is much lower than that of collisions. The

motion of the fluid elements due to the wave is then randomized by

collisions during a period of the wave. The translational and rota-

tional motion is due to the static electric and magnetic fields.

Substitution of Equations (5.8) - (5.10), and (C.ll), into Equa-

tion'(5.7) gives the second and third order Lagrangians as
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nom 2 2 + noq 2
2 2 _2 noms (V . ) + -- 2 x B

O 2 1 b 2

-noq, * (e+ U X b)+ e 2 - ,

3= - noMs ( V · )3 + 5 nons(
:

V V ) ( V· ()
3 5 40- _

n~q n0 q
2 :V(e+ U + X ( X b) , (525)

where the subscript 0 has again been dropped from s, and in obtaining

the first two terms in £3 from Equation (C.11), the total divergence

terms are neglected. The averaged Lagrangians are then written as

Equation (4.7) with

(2) n 0 m 2 1i2 2 + inqk 2Wk,0j~~kI - ~ noqmsI1k x*

A(3) - 5 n ms kk'k" + i 5 kkk- 
A
(3 )

, , =-i noms kk'k":nm

noq noq
+ i ° f g,:~k+U X b)+ i 2 Xkn X (^E k 2 i 5 ~ k ,,(, % + _xj ) + 2 -- k ,o x( ,) x.(5.26)

5.3 Formulation of the Lagrangian Density - Method II

The hydrodynamic Lagrangian in Section 5.1 is formulated from the

exact microscopic Lagrangian expressed by Equation (2.2). Because of

the mathematical difficulties involved in the expansion, however, its

practical use is restricted to very special cases. In order to avoid

these difficulties, we will obtain the expanded Lagrangians for the

hydrodynamic approximation directly from the expanded microscopic
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Lagrangian of Equations (2.26) and (2.28).

Let the random velocity at equilibrium be W. The velocity v-

coordinate system in Equations (2.26) and (2.28) may be changed to the

random velocity W-coordinate system via

v = U + W , (5.27)

where the subscript 0 is dropped from the equilibrium velocity, jO.

This change of coordinate system results in the following transformation:

at ~ t T T _ _ TU v _ a*(5.28)

For a plasma uniform at equilibrium, the second term on the RHS of the

second transformation in Equation (5.28) can be dropped. In the absence

of a static electric field, the time differential operator, D, defined

in Equation (2.19), may be written as

d d ~~~d_
D d_ (W X V+(W ) * = + (U ) -- (5.29)

TTW - dt - a t t z b)z

Here, the subscript 0 is dropped again from t, r and V. Let the plasma

temperature be very low, i.e., the mean value of the Larmor radius, and

the mean thermal velocity of particles are very small compared to the

wavelength and phase velocity, respectively. Since the spread of the

velocity distribution function is small for this situation, the displace-

ment g may be expanded about v = U as

(u + w) = (u) + (w - v) U) ()+ (WW:vWvW) (U) + ... . (5.30)

Substituting Equations (5.27) - (5.30), dropping the terms of VWVW_

and those of higher order than second in W, and using (W) = O,
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reduces Equations (2.26) and (2.28), to

£2 n Idt l - (e + U X b) + XB

nqW 2

2[ + W dt (,Wg) mWX B . wg

+ m f · (WW: W)~ - q(W · VW)· W X ) 2( W)· x 

d i 
+2 [W. Vg+ W * d (VW~)- q WX B- VW

]
gX B + 2 b (531)

£3 - 2 X b - g:V(e + U X b)3 \2 t r- r d t

+ [W. + w d ( W) - WxB · Vw)]. (- Vw) X b+ (WW:VV w) Xb

- (W. V%) (W. VW):V(e+ U Xb) -(W. W)():V(W X) > (5-32)

Though it is not a necessary restriction, the velocity distribution

is now assumed symmetric for the sake of simplicity, so that the off-

diagonal elements of W- ) vanish. The averaged Lagrangian

then yields Equation (4.7) with

A(2) x (2) + (2) + (2) + (2) + . (533)
k 0 O0 1 0 +(

(3) (3) + X(3) + (3) + (3) + cc
kk k 0 00 + lO+ l+ (5.3)11 '5 

The X(2)'s in Equations (5.33) are given by
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(2) 1 n 2 2 noq + iU* i nq *BXo -- ~ oL,KO I~ -no& (,~ \~x,~+ o% , J ,x

+ 2 1k 2

~~~~~11

(20) = 2 n mk
2
s okHI

2

00 20 ao~c

(2) * k

1where C and represent in any order the variables xy and z the

-2 1 2 * n0 q
2 ~s 2 lqk2

subscript has been dropped from s and the property of the skew-

symmetric tensor, ¢0¥ that a . b X c = oab bc has been used.

~~-~k / ~~~\* akk 2~k

The rules for the subscripts nd se ar e as follows: the+

Y \- Yf a a
n 2 y

C3s B - X x - n e s__b, (5.35)
211 Oa x P ~Wy \OWf B n0qCOY CO k a! 0

where a,P, and 'y represent in any order the variables.x,y, and z, the

subscript 0 has been dropped from s , and the property of the skew-

symmetric tensor, SC4, that a . b X c = eC ya b~c, has been used.

The rules for the subscripts and superscripts are as follows: the

subscripts on k and zero order variables indicate the components of

the coordinates; the subscripts on w and first order variables indi-

cate the participating wave vectors. The coordinate components of

these variables are indicated by superscripts. The only exceptions

are 11 and L, the use of which was explained in Section 3.5.1.

The X's in Equation (5.34) are given by
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3) = nq k .k + noqk, + ' 'k/ + 2 noqk(k + U X bk):, kt, k ,
o i

(3) = o
00

aga

k(3) i __k .~znq 3k a

2 qS ca(ko -kJ) .Xk b no ¢ s b * -X "

+ 2 n iq s a -% X , a, - (3
2m 0sBD m ¥ 6W X(3) i 2'-a 6a/nq ak ak

noqk s ~~- 'B- -X 

i %'k I%"~f
+ ~ noq so k( + U X jk): b . (5.36)

5.4 Inclusion of Ion Motion

Since the second and third order Lagrangians have now been obtained

in Sections 5.2 and 5.3, we are in a position to follow the procedure

described in Chapters III and IV to obtain linear dispersion relations

and the coupled mode equations. Before doing this, however, since ions

play an important role for the hydromagnetic waves, we must consider

how the inclusion of ion motion modifies the Lagrangians and the Euler-

Lagrange equations.

Including the ion motion, the Lagrangian may be written as

£= Pe + Pi + (

Pe
where the electron contribution, £ P is written for the terms in the

Lagrangians in the previous sections which contain the displacement

vector g. In order to denote the electron contribution, superscripts
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(e) must be appended to m, u , U k, ' Cxc' s, and V of Sections

5.2 and 5.3. The ion contribution, , is obtained from £ by

changing the superscripts (e) on these variables to (i) with the following

changes in sign:

q - -q ' (e) _(i) (e) (i) (5-38)
c c ' °Wk,p

In the linear theory, the equations for the ion motion to be derived

from the variations in (i) and V (i) are therefore the same as

those for the electron motion, except for the superscripts and sign

changes just noted. In Maxwell's equations, which are obtained by varia-

tion of the fields, the current and charge densities consist of the

contributions of both electrons and ions, i.e.,

j(e) + j(i) p(e) + (i) (539)

where j(i) and p(i) are respectively obtained from j(e) and p( e )

with the same changes as noted for i. The action, Nk, and Hamiltonian,

"k, should also be written in analogous form to Equation (5.37).

In the nonlinear theory, the correction factor ck, defined in

Chapter IV, is the same for both electron and ion motions. The other

nonlinear correction factor, Pk' does not appear in the hydrodynamic

approximation because g and V 4 are no longer functions of v. The

Lagrangian, the action transfer equation, and the coupled mode equation

can then be written as Equations (4.7), (4.9) and (4.10) with Nk, A(2)

and (3)B including the effects of ion motion.

5.5 Application of the Lagrangian by Method I

As an application of the Lagrangian formulated by the first method,

we shall consider the interaction of waves which belong to the parallel
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compression case treated in Section 5.2.1. Cylindrical compression

need not be studied since the waves do not satisfy the synchronism

conditions. The case of spherical compression is for collision-

dominated plasmas, and is outside the scope of our work. It is

under extensive investigation at Stanford by Peng. 3

The waves in the parallel compression category are electrostatic

waves: electron plasma and ion acoustic waves. In this subsection, we

shall obtain the linear dispersion relations and the coupled mode equa-

tions for these waves. The ordinary mode does not belong to this cate-

gory since it has variations in the xy-plane (k £ 0), and has a time

varying magnetic field. It thus violates the assumptions of Equation

(5.11). However, since the wavelength of the ordinary wave is usually

much longer than those of electron plasma and ion acoustic waves, as

shown in Figure 5.1, the dipole approximation for this wave may be

satisfactory when it interacts with waves propagating axially. Con-

sequently, we shall also consider interaction involving the ordinary

wave.

5.5.1 Linear Theory

For small-signal propagation, the terms of order O(e) in

Equation (4.7) can be neglected. Since only a single wave number, k,

is necessary, the Lagrangian may be written as

(2) A(2) + A2*(.0
Sk )=Ak k ) (5.4°)

where A(2) is given by Equation (5.15). Variations of 42) with

respect to -ke) and ake) give, respectively,
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Figure 5.1 Synchronism parallelograms for interaction of one ordinary
wave (pump), one electron plasma wave (signal), and one
ion acoustic wave (idler).
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z 

gz(e) . q +p
Ck = > ( (e)2 _ 2 (e)

-i, - 3kz S)
L o0e p i)

-ikzoek e= e)+Pi)

(e) - k U(e)
Pk~O = k - z z

p(e) =.-iqn k z(e)
( -lqn0kzk~

The first expression in Equation (5.41) is the equation of electron fluid

motion. A similar relation for ions is obtained by the proper changes

in Equation (5.38). The third expression is Poisson's equation. Com-

bining the relations in Equation (5.41) gives the dispersion relation as

(a )2

Kk= 1 - () 2_ () = o, 
Ck , - 3k zS2

ax C1kO 3ks 

(al = e,i) , (5.42)

where Kk is the equivalent plasma permittivity. This is the familiar

dispersion relation for an electrostatic wave. A simpler form of dis-

persion relation for an electron plasma wave can be obtained by assuming

the frequency and the phase velocity of the wave to be very high com-

pared to the ion plasma frequency and the average ion thermal velocity,

respectively, i.e.,

(i) (i) and k2s(i)
~0_)' 0 > > an d z j (5.43)

Equation (5.42) then reduces to

(e)2 (e)2 + 3k2s(e)
'LOk, 0 

=
°~

(

e + 
3 k

1e

KT( e )

(e)

I l - 1 m~[e'

On the other hand, the assumption that the wavelength of the ion acoustic

wave and the electron thermal velocity are much greater than the Debye

length and the phase velocity of the wave, respectively, i.e.,
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(e)2 >> k2s(e) >> (e)2 ,N >> k Z sII >> O ~~~~(5.45)

gives the dispersion relation for an ion acoustic wave as

(2

i)2 = Em(C)s(O) ,E m(1)s() K(Te) + T(i)) (5.46)
,l'0 = C1 (: II ' 1 o T~ II = I

The variation of k2 ) with respect to ok gives the equation for
1~~~~~ ~k

the conservation of action,

Nk a ( VkNk)

t + z = -0,

Iz~~~z\~ 1 I [z* z\
N. (-e Z* ec + k .k 2 lk ek OKkeke) + c.c.,(5.47)k a a.)k k k) ' k k 2 k_ \k k k

z

where the action, Nk, and the group velocity, vk, are defined in

Equation (3.13). Explicit expressions for Nk and vk can be obtained
k ~~k

by substituting Equation (5.42) into (5.47).

5.5.2 The Coupled Mode Equations

By using Akk(3)'k in Equation (5.15) and the first order equa-
Akk/kll

tion of motion [the first expression in Equation (5.41)], we can write

Equation (4.10) as

ink ~~z )EZ*Z
iN + v e~~/ , ek k ek/ , (5.48)k (t k E =) =-k /-kE Qk k k ek " , ( ' 48)

kkk
l

where the first summation is over all permutations of k, k t k"; the

second is over the electron and ion species, and QM )f is given by
~kk k

(ca)2 k+ S(a)Ikkll)

=Qm fl ae qa:k z + I~ k~zkz (5.49)
Qkk k _)% i (a2~ 2 (ce) e)2 2 (Z) 20 2s(aZl

i~~~~~~~~m ~~~~°k 0-°3kz II /if kz Lc0-3

(5.49)
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where (-)a is 1 for electrons and -1 for ions. Equation (5.48) can

be written in the form of Equation (4.14) with

NzN ,(cz)2 ~(a)
z _ k N k,0

E- =2iE0 2 2( (a))2k (5.50)
kF ~ a ((kC,0~z~

Czz = E Q(a) i) .(.1

-p, , i

Equation (5.50) has been obtained from Equations (5.42) and (5.47).

The role of the ordinary mode can also be considered in the non-

linear interactions,as pointed out at the beginning of this section.

Equation (4.14) is therefore the coupled mode equation for any combina-

tion of the electron plasma wave (P), the ion acoustic wave (I), and

the ordinary wave (O). The combinations which satisfy the synchronism

conditions are (i) pump P-signal and idler P, I (see Figure 5.2), and

(ii) pump O-signal and idler P,I (see Figure 5.1).

Case (i) (Cppi): Using Equation (5.43) for the electron plasma wave

and Equation (5.45) for the ion acoustic wave together with their linear

dispersion relations given by Equations (5.44) and (5.46), the quantities

Ik and C in Equations (5.50) and (5.51) can be written as

co(e) (kk4 (a)

P =_ _ _0_ _,P k 0 ~I 2i D k
Ik = 2i ' k 

=

9 k) E (5.-52)

N Oa N

C p = -i 7 1 (k2D + 12 k kZ) (5.53)
PPI 3m ( kZ,(e)2

i N

where k
D

is defined by

kD =(Debye length) . (5.54)
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Figure 5.2 Synchronism 
Parallelogram 

for interaction of two Plasmawaves (pump and signal) and one ion acoustic wave (idler).

95

(b)



In deriving Equation (5.53), the synchronism condition of Equation (4.13)

has been used. For the special case where the Debye length is much

shorter than the wavelengths of the ion acoustic waves (pump and signal),

the coupling coefficient in Equation (5.53) becomes that obtained earlier

by Tsytovich.8 8

Case (ii) (Copi): In the limit of k - 0 for the ordinary wave,
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ p

the wave vectors of the signal and idler waves are equal and opposite

[see Figure 5.1(a)], i.e.,

kz k~

k - k = ki (5-55)

By using the approximations and dispersion relations expressed by

Equations (5.43) - (5.46) for the electron plasma and ion acoustic

waves, the quantities I
k

and C in Equations (5.50) and (5.51) can

be reduced to

0(a)2

I0 - 2iEo N (5.56)P 0 WM3cO
k,0

qk
2

C 0 = i -k (5.57)
3 k 'm

pO

The coupling coefficient in Equation (5.57) has been obtained by other

methods by Goldman89 and Harker.9 0

5.6 Application of the Lagrangian by Method II

The purpose of the following linear theory is to demonstrate that

the second order Lagrangian obtained by the second method [Equations

(5.33) and (5.34)] is indeed the correct one. To do so, we shall prove

that the linear dispersion relations obtained from the hydrodynamic
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Lagrangian are the same, within the low temperature approximation, as

those obtained by the microscopic treatment of Chapter III. For

simplicity, only the electron contribution will be considered in the

linear calculation. A similar demonstration can be made for the non-

linear theory. Since the procedure is the same as for linear

theory, the demonstration for an electron plasma is omitted, and we

shall consider instead the interaction of two electron plasma waves

propagating nearly parallel to the static magnetic field with an Alfven

wave propagating precisely parallel. For this interaction the ion

motions will be included,since they play the dominant role in determining

Alfven wave properties.

5.6.1 Linear Theory

As in Section 5.5.1, the Lagrangian can be written as

Equation (5.40) for the linear theory, with Ak2) as in Equation (5.33).

The first order variables to be independently varied are Zk, VWk

and ak, with the gauge cp = O. After some albegraic manipulation, the

Euler-Lagrange equation from the variation in VW4
k

yields

agk /- -k- 2kR R 2k z ,
w \8w / Xk -2 °kOk d k - '

aw L )~ / Ok Ik m CO COk
R \L , ) ( kkO

R L* 

I~~~~~~

k bkk /.1
z- i Itj \z k0 k1_

atk k kk - k R _ Ib

R-L \WR k1_1 W CO tk -1
k, k1~~~~I,-1
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Cartesian coordinates (x,y,z) were used in Equation (5.35). For sim-

plicity, the quantities k, ~k ak (hence ek and bk), and W in Equa-

tion (5.58) are expressed in the rotating coordinates (R, L, Z),via

the transformation of Equation (3.31). It should be noted that the

transformation for V/6W yields

/W I = Z U -
1

/W , (I = R,L,Z ,j = x,y,z) ,
IIj (.59)

J

-l
where Uij is the inverse of Uj.

The variation of (2) in Equation (5.40) with respect to k

gives

RIL tRIL

(ca+ k 2s + k2 S)tR? = ko R, w + kLk s k 1kL k%
(k O k:F ±l .L kT R.

Z II~~~~~~~~~~~~~~~

R,~~~~kL)+ (ck + k 1 k s k + R (ekRL +i U± R ),

22 Z~~k) kz- W 

(a~,ok~s +k~s )~ )ks ÷a ) z-
.k 1 L z ( k, + kl)R R +W k ,O k-l L- WL

z

+ 2kW kzS + q (5.60)kO zIIz m k

The Euler-Lagrange equation resulting from the a -variation yields

the wave equation, as in Equation (3.19),

- X (Z X ek) + _k e = 0 K 3 = 1 + k (5.61)

where the current density is given by
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Jk = -in q (ok - % ) gk '

RR 
k = kRsi - + k s 

Q~z = z +I b W z+

Z -k U + kRs
±

+ I•~~=~~~~ zz

1.11 2)+ k sa
'Tk~ = kLs IW+ z I I1

RL =
P 11~= -k Rs 6L 

LR a
Qk = -kLS W 'aw 

R

QRZ =b
0k = -k s

zWL'
Zn = -ks as 

= Z . aWR

Qk = -k,(U + s wz II 

Equations (5.58), (5.60) and (5.61) are the

dynamic equations.

If the mean value of the Larmor radius

of the electrons are very small compared to

phase velocity of the waves, i.e.,

k << 2 k2s << « W
k SJ. << c '9 z it kk k,v

required first order hydro-

and the thermal velocity

the wavelength and the

L1V = 0±+11 or ±2), (5.t

for a wave whose frequency is far from the cyclotron frequency

(k >> » or << w ), the second relation in Equation (5.63) may

be replaced by

k2s << « 2

z I k,0 (

Elimination of VWg from Equations (5.58) and (5.60) gives the equa-

tion of motion to first order in k2 /cW2 and k
2
s / W a k as

I c z .k, k,v

4 =~..k k' ('

63)

5.64)

3.65)
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where the elements of the matrix G are given by

RR LL* _____ 1
G = G _ a 1+

k -k m CD _
k k1_+

Zz q 1
Gk - m 2

kO

RL = GLR*
k -k

1 1+

k2s

1 1 -l
k~l k~-l

k2s

2
) Dk,-20> k, -2

k2

+

[22

i + 2'1k, l3-1

~kO

k
2

s
= 2 q R I

m k)k I 0k~ lOk _1

ZR ZL* q s L
k

z 1 + 1

k = G-k m +-Ok- \ Ik-

(2 k s U

RZ GLZ* q 1 k UR I Z

Gk = 3-k m -o o t k 1 RUZ+ 3 k c,kk kO 1k-i kl k-2

ak (1 kO ,

With the use of Equations (5.58) and (5.64), the equivalent plasma

permittivity matrix can be expressed as
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03N

= 1 - 2 2 2 z
k\ k, -1 k k k l

\3 } |\kOs + O -

cok 2 2s2 k 2 U2
( %'( e k 2 (it2 + I L z

%,ok / , 0 2 )l% k,-1

k 2 s

+ II
%'k, 1% -1

k2U2 zk(3-_ c/k 0o)-_k I0_ + _k,o_ _c

o k, 2 )k, -2 +k, 1, -1

k2s
+ I [I 1 + 4 Z z k,0 +

kl k-l knl ko- 1+9 o )k , k~- 

CU2

iK RL=KLR -21-N
k k 

s k2
I1 R,-1

"'k) L~k) l

)2k

KRZ= KZR =KZL = KLZ* = N R [U + s
k -k = k -k o2 ok k I

k k-1 

kz~k( z k
2

kO

k2U k2U
I z z z

+ 3 O co + O3
kl k,-2 kO k-1i

+ kzs,_. +_z 
(5.67)

The wave dispersion relations are then obtained by substitution of Equa-

tion (5.67) into Equation (5.61).

The equivalent permittivity in Equation (5.67) can also be obtained

from Equation (3.44), with the low temperature approximations of Equa-

tion (5.63), by using the following series representation of the J

Bessel function:
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Jn(k) = (. ) E (m+n+l)

m=0

Thus, when the low temperature approximation is made, the dispersion

relations from the microscopic treatment reduce to those obtained in

this section.

(5.68)

5.6.2 Interaction of Electron Plasma and Alfven Waves

The interaction mechanism of two plasma waves and an Alfven

wave is as follows. In the magnetosonic regime, the Alfven wave pro-

pagating parallel to the static magnetic field is a linearly polarized

transverse wave.9
1

If its electric field is polarized in the direction

of the x-axis, this electric field can interact with the x-component

of the electric field of an electron plasma wave propagating nearly

parallel to the magnetic field to produce rf space charge variations in

the x-direction. This rf space charge may in turn excite another electron

plasma wave also propagating nearly parallel to the magnetic field.

These electron plasma waves have the same azimuthal angle which may,

of course, be chosen arbitrarily. Since the strongest interaction ob-

viously occurs when the electric field components of these electron

plasma waves normal to the magnetic field are aligned along the x-axis,

we shall assume that the electron plasma waves propagate in the xz-plane

as shown in Figure 5.3. Therefore, all vectors are in either x, y or

z-directions. For albegraic simplicity, drift velocities are ignored

in the following.

Linear Equations: First, for the Alfven wave, we have

k
k << WM y z = bz

~k << ~(i) kx =eyk b k 0 y = (5.69)
kk=k =0, ek k b b =0 k
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Figure 5.3 Synchronism parallelograms for interaction
of two plasma waves (pump and signal) and
one Alfven wave (idler).
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To lowest order in ck/ 
i ) , transformation from (R,L,Z) to (x,y,z)

coordinates reduces Equations (5.58) and (5.65), respectively, to

awt x) 8,x(e) ay(e) Bay(e) az(e)=°'k k k k- k =0,

x y x y z

at ~e) k kx ebyk z x(e)_ .z gx(e) q k

zW~e) k 5k_(7 k + e) (e)2 '
z c c

y(e) bk k

k = z x(e) + e y(e)

k q k k

x c y

by

- i Sk

:za) bY

m c k

C

= -2i ~ k k

c

x(e) 1 ~ ~e 
~k = _7-e 7 + ~- z 1 

k 2 + 3 ~~~~~k~(e)2 _ '
z(e) = 0 ,

iy~e)= i1 + k +Z X

k m c) Wk ] ek '
c c~~

(5.71)

Similar equations for the ions are obtained from Equations (5.70) and

(5.71) by the procedure described in Section 5.4. Including the ion

motion in Equations (5.61) and (5.67) gives the dispersion relation as

n 2 -_ = 0
z k k = 1 + N)2

a
c(a)2 2

c k
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Next, for the electron plasma wave, we have the relations

k << k k
x z y

x z
bX = b = 0
k k

x z
= 0 , ek << ek,

b = - (kzek - kxek)
kb )k- ~k) 

To first order in k x/kz Equation (5.58) becomes

atx(e)

k
y

ay(e)
k

x

k
z-

k

ay(e)

y 

=

0

Y

gx(e)+
k

(e)

z

k (e)
z c

(e) -(e)
k~l k~-l

zk z(e)

k

gy(e)_
k k1 k,- ye. co ecoe bk"

k~~i7

k L(e)
z c gx(e)

c(e)c(e) k
kl k,-l

k

x k 1 2 ( (e)2)
(e)(e) +kcl zee /
k~l k1-i k)l k,-l/

k CD(e)
z c

=(e)W(e)
k, 1 k, -1

2(02
1 + k z(e)_ 2i

k 1 k, -l

t ye)+ i m1) y~e)
1 ~~m

cD2+D(e)2
k c y

c(e)2CD(e)2 k '
kl k,-l

c(e)
c b y

o (e)o(e) k '
k k, 1 k,-1

c ac(e)
k c bY

c(e)2co(e)2 k
k1l k-l

m~e

(5.74)

and Equation (5.65) becomes
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eY = 0

(5.73)

atx(e)

k

x

akx(e)

z
z

aky(e)

k

z

az(e)

k W
x

atz(e)
k

awy e)
y



gx(e) 1

~~k = (e o3(e)cuJe) L Wk~l kl-i

k2s(e)
+ Z 11

2uk
k( 1 k-jkT3 k,-I

k k s(e)
x x z 11 z
e
k
+ 

1(e)2,-(e)2 ek 
k,1 k .9-i

ky(e)= -i
k

q.-i 7T;
m

z(e) -
~k - m~

-(e)
q 1 c

m k k) 1 k)-l

k2s(e)
+ Z It

2 (jW 7 4
k, - RV1 x

lekX
k~-i knl

k k s )a(e) ()3k-2_,(e)2)x z 11 c (3k c )

.3,,(e)2o(e)2

k kl kl-l

1 (
k

z
ek (5.75)

Substitution of Equations (5.67) and (5.73) reduces the wave equation

[Equation (5.61)] to

xxA
k

e k + Ak e k = z
Ak ek Ak ek= Kk = 0 , (5.76)

xx xz
where AkX Ak ~ and k are given by

2 (e) -

p

c k l(e) (e)

L kll kl-i

(,?244(e)2)k2s(e)
+ k c zI

2 (e)2 2(e)2
k,1l k,-1

cs(e)k2s(e )

+ c z 11
2

,() 2 k k
N ~ x z I (e)

( k e () e) (e) I
k, 1 k, -1

(k2+_(e)2) (e )

k c I1
+ (e),(e) I ,

kll k,-l 

l,(e) \ 2 3:l 2 s(e)\

K = 1 - + z 11 k k a~~~~k 
K 1~ ~ ~ ~~ k ( ( e ) ) 2 ( )~~~~~~~~~~~~~~~~~

o106

xx
Ak

AkXZ = z

(5.77)
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In Equation (5.77), the ion contributions have disappeared because

i) << k [Equation (5.43)].

Coupled Mode Equations: In order to obtain the coupled mode equa-

tions, the general expression for Akk3)k" in Equation (5.34)has to be

reduced according to the conditions of the present case. Let the Alfven

wave be the idler. Equation (5.69) for the Alfven wave,and Equation

(5.73) for the electron plasma wave then reduce (0) (03 ) and t( 3 )

in Equation (5.35) to the forms

XNj5(e) n~ zt~k2x(e) + X ~ xe , 

2 I E k k [kzek k i k i k

E ,, 10 ° / E' [kzsebyyk k (e

kk k k~k k~i 

+ k 5~e)(gk(e) + gkCe ze)) bY]'

z z

k
(
3 )(e) in

0
q kse) kx(e) ~k-e)

10 0 _l E ' k k k;5.8
/~~~~~~~~~~/.8

kk' k k k ki z z

Since substitution of Equations (5.70), (5.71), (5.74) and (5.75) into

Equation (5.78) gives a rather complicated expression, an additional

simplifying assumption will be made that

k'k' >> c» 
)

(kk' = electron plasma waves). (5.79)

After eliminating ek by use of Equation (5.76), the coupled mode equa-

tion can be written in the form of Equation (4.14) with
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Here (-) is 1 for electrons and -1 for ions. It should be noted

that Equation (5.81) has two kinds of terms, one of order O(WO) and

the other of order 0(wc2). Since e) >> ), the former terms for

the ion equation can be neglected compared to those for the electron

equation. Therefore, for ~ Q(a), the summation need be taken only

forthe terms of order O(cT2 ). It should also be noted that the
c

x-components of the electric fields of the electron plasma waves, and

hence the coupling coefficient, CppA, vanish when k - O.
x

5.7 Discussion

In this chapter, two methods of formulation of the hydrodynamic

Lagrangian have been presented and applied to several specific cases

of wave-wave interactions. Lagrangians previously used by others for

the MHD approximation include only the second moment equation.42697

Since our hydrodynamic Lagrangians include Maxwell's equations and the

second moment equation (first method), or three moment equations

(second method), they are more general. Fundamental equations for

the MHD approximation can be obtained from our Lagrangian in Section

5.2.3 for spherical compression by introducing Ohm's Law. 8 3

The second method in this chapter has very important advantages

over the first. In particular, as demonstrated in Section 5.6, it

does not involve the mathematical difficulties associated with the

expansion of the Lagrangian in the first method, which effectively

restrict us to the three special cases treated in Section 5.2.

Another significant advantage is that in the case of nonlinear inter-

action it can be applied when all interacting waves do not have the
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same value of y. This situation cannot be handled by the first

Lagrangian method. For example, although the small-signal proper-

ties of electron plasma waves and compressional Alfven waves in an

isotropic plasma can be studied by the first method using two differ-

ent second order Lagrangians [Equations (5.15) and (5.21)], for

interactions between them we must use only one Lagrangian; since

these two kinds of waves have different Lagrangians for third

order and above, a satisfactory higher order Lagrangian cannot be

chosen. In the second Lagrangian method, however, this difficulty

does not occur; the interaction of any combination of waves can be

treated provided that the basic assumption that the wave phase velo-

cities are greater than the electron thermal velocity is valid.

Finally, we note that the second Lagrangian method includes all

necessary moment equations, whereas the first contains only the second

moment equation (the momentum equation), and must employ the other

moment equations as subsidiary conditions.
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Chapter VI

CONCLUSIONS

6.1 Review of the Research

The main purpose of our work has been to develop a general theory

of the averaged Lagrangian method to describe warm, collisionless

plasmas, and to demonstrate the effectiveness of the method in analyzing

wave-wave interactions. This has involved formulation of appropriate

Lagrangians,and extension of previous work on the averaged Lagrangian

method for cold plasmas. Treatment of specific cases has demonstrated

the power of the method in analyzing wave-wave interactions by con-

firming some results obtained previously by other methods, and pro-

viding coupling coefficients for a number of new interactions. Since

our developments cover both the microscopic treatment and the hydro-

dynamic approximation to it, the averaged Lagrangian method is now

available for use in all of the usual plasma descriptions: microscopic,

hydrodynamic, and cold plasma.

Among the advantages of the averaged Lagrangian method, as compared

with the iterative method, are first, as demonstrated in Section 4.2,

that the coupled mode equations can be obtained in canonical form

from Ck-variation of the Lagrangian without specifying the detailed

form of the Lagrangian for-a particular system. In the iterative

method, on the other hand, the coupled mode equations can be obtained

only after detailed and lengthy algebra specific to the case under

study. In the Lagrangian method, tedious algebra is required only in

obtaining the coupling coefficients. Second, the Manley-Rowe rela-

tions can be obtained by variation with respect to phase, and are

automatically consistent with the!coupled mode equations.
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The second formulation of the hydrodynamic Lagrangian proposed

in Section 5.3 has significant advatanges over the iterative method

(here we mean direct use of the moment equations and Maxwell's equa-

tions). As described at the beginning of Section 5.2, expansion of

the moment equations involves mathematical difficulties. Consequently,

even for small-signal propagation, most of the work by direct use of

the moment equations and Maxwell's equations has been limited to

either the three cases in Section 5.2, or the special case of a

plasma in a strong static magnetic field,9
2

and the expansion has been

carried out using an adiabatic equation of state of the form of Equation

(C.1). For cases more general than those just mentioned, the validity

of the adiabatic equation of state is in doubt. For example, an elec-

trostatic wave has been shown [Section 5.2.1] to satisfy Equation

(C.1) with Y = 3. As soon as its propagation direction departs from

the z-direction, the assumptions in Equation (5.11) are violated, and

Equation (5.12) is no longer justified. As demonstrated in Sections

5.3 and 5.6,and discussed in Section 5.7, such difficulties are

avoided in the second formulation of the hydrodynamic Lagrangian.

The averaged method has been used to obtain the coupled mode equa-

tions for all possible interactions of waves propagating nearly

parallel, or precisely perpendicular to the static magnetic field,

using the microscopic equations. Several interactions have also been

treated in the hydrodynamic approximation. The new interactions

that we have studied by the microscopic treatment are those among

three circularly-polarized waves (except that among three right-hand

circularly polarized waves); among two plasma waves and one circularly-

polarized wave, and among one longitudinal cyclotron harmonic wave
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and two ordinary cyclotron harmonic waves (pump 11 - signal and idler

0,0). In the hydrodynamic approximation, the only new interaction is

that among two electron plasma waves and one Alfven wave. Since one

of the principal aims of our applications of the method has been to

compare the results, and the ease of obtaining them, with previous

analyses by other methods, we have not carried out numerical calcula-

tions. We will simply speculate here on some future directions that

appear to be worth following.

It is evident that rf space charge plays an important role in

mode coupling. In order for nonlinear interaction to occur, at least

one of the participating waves must have nonzero rf space charge. This

being so, we may divide all interactions into four cases: those among

three longitudinal waves; among two longitudinal and one transverse

wave; among one longitudinal and two transverse waves, and among three

quasiperpendicular waves which have nonzero axial components. Previous

analyses have shown that relatively strong interactions occur among

three longitudinal waves (e.g., plasma waves or longitudinal cyclotron

harmonic waves).28 ,32 For interaction of three cyclotron harmonic waves,

for instance, Harker and Crawford calculated the nonlinear growth rate

due to a pump wave of 0.4 volt to be order of 1 - 10 db/cm over the

range of cyclotron frequencies for a typical laboratory plasma of

n
O
= 1.25 X 1010 cm3, when the electron temperature is 4 volts. 32 The

interactions of this category studied in our work are the P-PP and

11-11,11 in the microscopic treatment, and the P-PI for the hydrodynamic

approximation. In the P-P,I interaction we note that the range of

frequency for synchronism is narrow, and the electron plasma waves

and the ion acoustic wave have very low group velocity, so that plasma
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inhomogeneity or collisional effects my invalidate our results.

The next important interactions should be those involving two

longitudinal waves and one transverse wave. Examples treated here

are the R-PP; L-P,P; P-R,P; and P-LP for the microscopic description,

and the O-PP and P-P,A in the hydrodynamic approximation. The mechanism

of interaction by the microscopic treatment may be considered to be

similar to that of interaction among three longitudinal waves, since

longitudinal components of circularly-polarized waves can produce rf

space charge in the direction of propagation when they propagate

slightly oblique to the static magnetic field. In the case of pre-

cisely parallel propagation the longitudinal components vanish, and

so does the interaction, as shown in Table 4.1. Because these longi-

tudinal components are small, we may expect these interactions to be

weaker in general than those involving three longitudinal waves. How-

ever, as mentioned in Section 4.5, the whistler and plasma waves can

be unstable for a non-Maxwellian plasma,and can also carry positive

or negative energy. It would consequently be of great interest to make

further detailed analyses of the R-PP and P-RP cases when the R-wave

represents a whistler. The character of the O-PP interaction is

essentially the same as that of the P-PP interaction since, in the

dipole approximation, the ordinary wave behaves like a plasma wave

of infinite wavelength. The interaction may be expected to be corres-

pondingly strong. In fact, this interaction is currently considered

to be an important process in ionospheric modification experiments

with high power sounders9 3 and in producing plasmas by use of lasers.9
4

As shown in Figure 5.3(a), the P-P,A interaction occurs due to coupling
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of the components of electric field perpendicular to the static mag-

netic field. The interaction consequently vanishes for parallel

propagation. Since the analysis in Section 5.6 was for the Alfven

wave within the magnetosonic regime (k << (i)), the range of fre-

quencies of the electron plasma waves for synchronism is relatively

narrow. In practice, slight inhomogeneity of the magnetic field and

plasma would cause strong deviation from the theoretical predictions.

Interactions considered in our work involving one longitudinal

wave and two transverse waves are the R-R,P; L-L,P and P-PL, for parallel

propagation, and the 0-11,0 and 11-0,0 for perpendicular propagation. One

of the features of these interactions is that the second order electron

gyrations due to two transverse waves (_ k X bk,) are coupled to the

rf space charge of the longitudinal wave. Therefore, contrary to the

case of interactions involving two longitudinal waves, interactions

can occur among waves propagating precisely parallel to the magnetic

field. Since only one longitudinal wave is involved, the interaction

may be expected to be very weak.

The final case of interaction is among circularly-polarized waves

propagating slightly oblique to the static magnetic field, whose

electric field components in the direction of wave propagation produce

small amounts of rf space charge. Examples are the R-R,R; R-R,L and

L-RL. The rf space charge is much weaker than for the first two, and

hence no strong interactions can be expected. In the ionosphere, the

growth rates due to the R-RP; L-LP or P-RL are of order 10 
-
3 - 10

-
6 db/m

for a pump wave field strength of e - 0.1 m volt/m,9 5 and that due to
P

interaction among three whistlers is of order 10
-
6 db/m or less for a

pump field of e 1 m volt/m. 7 Previous calculations have, however,

been performed assuming cold plasma, or by use of moment theory. It
been performed assuming cold plasma, or by use of moment theory. It
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should be remembered that electron plasma waves and whistlers can be

unstable, and can also carry either positive or negative energy when

the electron velocity distribution is nonMaxwellian. Further detailed

studies are consequently necessary for interactions involving these

waves under magnetospheric conditions.

6.2 Suggestions for Future Work

The next important step following our work is to obtain numerical

solutions for the growth rates for comparison with observations made

in the laboratory and the ionosphere. Most previous numerical

solutions have been obtained for cold plasmas, or within the hydro-

dynamic approximation. Those obtained by the microscopic treatment

for warm plasmas are potentially of greater interest because the micro-

scopic description generally offers a broader range of possibilities

for synchronism. Also, interactions involving longitudinal waves or

whistlerswhich would otherwise be weak, may be much more important

in plasmas having nonMaxwellian particle velocity distributions.

A large number of interactions which can be treated in a straight-

forward manner by the averaged Lagrangian method still remain to be

studied. In the microscopic treatment, for example, the interactions

between waves propagating parallel to the static magnetic field, and

those propagating perpendicular should be examined. In the hydro-

dynamic approximation, there are numerous combinations of electromag-

netic waves and ion waves which are likely to couple strongly, and to

be observable experimentally.

In our work, the averaged Lagrangian method has been developed for

coherent three-wave interaction in an infinite, collisionless warm

plasma in a uniform static magnetic field. Some extensions of the
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present theory to less restricted conditions would be of interest:

1. Higher Order Wave-Wave Interactions: Waves which do not

satisfythe synchronism conditions for three-wave interaction can still

be coupled by higher order wave-wave interactions in which more than

three waves interact. Even when three-wave interaction occurs among

existing modes, such higher order wave-wave interactions may not be

negligible, since they may have growth rates comparable to those of three-

wave interaction. To describe n-wave interaction, the Lagrangian must

thbe expanded up to n order in perturbation.

2. Background Reaction: If the reaction on the assumed homogeneous

and time-invariant plasma is taken into account, the Euler-Lagrange

equations for the perturbed state should be obtainable from variations

of the expanded Lagrangian with respect to r(= rO + Q), 9(= + (i ) and

A(= A + a), instead of ~ , p1 and a of Section 2.2. 4 The Euler--.0

Lagrange equations from £2 should then yield equations equivalent to

those of quasilinear theory. An alternative way to take account of the

reaction on the background is to assume the equilibrium velocity distri-

bution function, fo , to vary slowly in time and space, and to take

variations in I , c1 and a . This method is being developed at

Stanford by Galloway.9 6

3. Nonlinear Wave-Particle Interaction: Next in order of complexity

is nonlinear wave-particle interaction. This corresponds to the beating

of two waves to form a sum or difference wave which then interacts with

particles in resonance with it. As for wave-wave interaction, the

Lagrangian must be expanded beyond second order in perturbation to take

such effects into account. The main difference from wave-wave inter-

action is that the particle velocity distribution itself is modified by
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the waves. Consequently, the technique developed to include the back-

ground reaction has to be extended.

4. Nonuniform Plasmas: The expanded Lagrangians in Section 2.2

are applicable to inhomogeneous plasmas. Homogeneity has not been

assumed in formulating the hydrodynamic Lagrangian by the second method

in Section 5.3. Therefore, microscopic or macroscopic properties of

inhomogeneous plasmas can be described by using these Lagrangians.

Among the subjects of interest is stability analysis. Suydam obtained a

97
stability criterion for pinch in the MHD approximation. Similar

criteria for microscopic and macroscopic plasmas could be derived by

obtaining the Hamiltonians from the Lagrangiansand by finding the

conditions for minimizing the potential energies. It is noted, in passing,

that, since the field quantities are functions of ,0 + I , the

98
Lagrangian in Equation (2.15) is in the form of a correlation function.

Interesting properties of the Fourier transform of the correlation

function would suggest the possibility of simpler analysis than the

direct use of Maxwell's equations and the Vlasov equation for the

microscopic treatment or the moment equations for the hydrodynamic

approximation.

5. Bounded Plasmas: Amongst the complications not treated compre-

99
hensively is that of plasma boundaries. So far, Laval et al, 9 and Spithas

and Manheimer O 0have considered the three-wave interaction of three

coherent plasma waves in a waveguide with an infinite magnetic field,

while P6rulli
1 0 1

has made an extensive study of such processes from

both a theoretical and experimental viewpoint. All of these studies

have used the conventional iterative method. The averaged Lagrangian
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102
method has been employed in recent Stanford work by Larsen 2 for the

interaction of three coherent plasma waves in an infinitely long cold

plasma column with and without an infinite static magnetic field. The

three-wave interaction work should be extended to the case of a plasma

column of finite length in a finite magnetic field.

6. Random Phase Approximation: So far, we have discussed only

interaction of coherent waves. As mentioned in Section 1.2, however,

the random phase approximation must be used for turbulent plasmas. For

randomly phased waves, only quantities averaged over a statistical

ensemble are meaningful. Since simple averaging makes the LHS of

Equation (4.10) vanish, the coupled mode equations cannot be used.

Instead, the wave kinetic equation, which describes the rate of change

of the plasmon distribution function or quantum density, is used.1 0 3

The wave kinetic equation is the ensemble average of the action transfer

equation [Equation (4.9)], 10 4 and the plasmon distribution function or

quantum density is the action, Nk . Therefore, the coupling coefficients

obtained in this work lead directly to those for turbulent plasmas.10 5
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Appendix A

DERIVATION OF EQUATION 2.18

Figure A.1 shows two pairs of corresponding cells defined in

Section 2.2. One is at time t, and the other is the same pair after

the infinitesimal time At. The equilibrium cell and nonequilibrium

cell are located at (r ,v ) and at (r,v), respectively, at time t,

and at ( , ) and (r',v') at time t' = t + At. The displacement

vectors are ( ) at t, and (~',') at t'.

The displacement vectors at t and t' are given by

A = r -i, ' =r' - r (A.1)

The position vectors r' and r' at t' can be written as~~~~ ~'0

= r + (O + +)t, r =r + + At (A.2)

where use has been made of v = + Substituting Equation (A.2)
where use has been made of v = ~0+ ~' Substituting Equation (A.2)

into Equation (A.1), and subtracting the first expression in Equation

(A.1) from the second, gives

At ~ g' - = C At . (A.3)

The velocity displacement vector, , is therefore the time rate of change

of the displacement vector . The time rate of change of t, on the

other hand, can be found by the Taylor expansion of ' about A, and

substitution of g from _'. It yields

Equation (2.18)resultsfromEqua s(
: Lat + (0 * + (A.4)

Equation (2.18) results from Equations (A.3) and (A.4).
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r

Figure A.1 Time evolution of a corresponding cell pair.
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Appendix B

INTEGRAL REPRESENTATION OF THE COUPLING COEFFICIENTS

FOR PERPENDICULARLY PROPAGATING WAVES

In this appendix we shall derive expressions for the coupling co-

efficients in Equations (4.32)-(4.34) in convenient forms for computa-

tion. This will be done by expressing the Q's in Equation (4.28) in

terms of integrals. To obtain integral expressions for the DG's and G's

we must solve the equation of motion expressed by Equation (3.18) or

(3.32).

In the absence of eZ solving Equation (3.32) for Dk O k-gives

Dk,o k = Dk,o Gk k (B.1)

where

D GR LL* q_ exp{-i[cnk _l(-+k)-k v sin(+ -k)]/0c}

k,O k -k,O -k 2im w sin( k/wc

X| d [e exp[i(wk~ + k v sinj)/0c]
~exp(1 + _2 MCI

-k
-

7

D RL D* GLR* q k v expci(Xk)-i[k(+-k)-k I sin("-k)]/
k, k k.O -k -OGirk wcksin(7=/kc)

X |d exp[i(ai+k Jlv sisi)/Mc] (B.2)

-k-Equation (B.2) in turn gives

Equation (B.2) in turn gives
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RR LL* q
G = G k -k _k

exp[-i[k(+-+k)-k vJ sin(s-ik)]/nc}

w2 sin~T[O'Vw )
£ £

X Id exp(i4) d+[exp(-i~) - Av] exp[i(mkO-k vsi+ M)/c] 

~-Ok
-

V 
~

T

RL GLR* q
Gk =G = - 7;

k v exp[2i'k-i[w(l-4k) - k
z
v
.
sin( - k) ]/c

2 si(2 /)
%c'Ok sin (nwk/%)

x f -4d exp(i4) 

I I %

d4 exp[i(kc-k.v.Lsin4)/c]

The unitary transformation from (e , ek, ek) to (ek, ek, ek), described in

Section 3.5.1, requires that

l = 2 (GkR + GkL + G exp(2ik) + GR exp(2ik)) 
Gk 2 GRR + Gk k R ex(-2i ~k k exp(2ik'

(B.4)Gk = 2 (G 
k

LGk exp(-2ik) GLRexp(2i0k)G~GkL +G

Equation (B.4) also applies to Dk oG
k

. Substitution of Equations

(B.2) and (B.3) into Equation (B.4) gives
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Dk oG 11 1 - q
k, O'k 2im

f k 
x -

k
+k-';-~-

exp {-i(Ck("-k)-klvsin ( -n k )/ c}/

% sin(~%/%)

4 cosC(+¥-+k) exp[i(ck + kv /sin)/ c]

D Gll q exp {-i[Lk(+.-k)-k vIsin (L k )]/ c}

k, 0k - 2im %c sin(7k/% )

f4k -

X

+-+k-l

d4 sin(+-4-k) exp[i(akA + k v sin)/C] ,

llll q exp {-i [k (- k)
-
k v sin(+ -k) ]

/
c }

sin

+4k + t_ + - _-=_r- - _
X d4f d cos(+-+) exp[i(wk. - k v sin+)/W] 

-k -tq-I

_L q exp{ -i[ck(v-~k)-k v sin(+ -k)]/ c}

k 2 sin2

X -+ df_ d sin(-)exp[i( - kvs(in,/%C] )

x J ~4J 4 d sin(44) exp[i(co~k+ k v si4)/cu]

Equation (4.28) is then written as

kk k -

2

i e k , CD)N T I exp/-i[kn/-lvlsin+OW,)/w
32 0 -7 kTk II

Cc

2

I ([(2mc / I)Sk - (1-aok,,/o.)k)Tk)I
CD

C

where Sk and Tk

(B.6)

are defined by
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I

0 =/ i ktt
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exp(-i% c) f-)k
+

_ _ _

Sk sin(ak/ c`) f4 -k- d4 cos(+ --kI,)exp(-i[ k( + k vsinv ]/c) ,

exp (-ia)A /w )C k _
exp(sin iWAG-VCfl)d di~ d4~cos( P-"~k-+Ie/I) exp ak- vLi+ mT. = o s (k-- -k ,,''exP{-iC ~-~ v sina]/ o.
sin (itk/°c) '-k- ~-~ (B.7)

k ~~~~~~~~~~~~~~~(B. 7)

Substitution of Equations (B.6) and (B.7) into Equations (4.32)-(4.34) gives

an integral representation for the coupling coefficients C II, Ci 0
0 , Co0

0 ,

and C00, as desired.
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Appendix C

EXPANSION OF THE STATE EQUATIONS

The purpose of this appendix is to obtain the elements of the

tensor s second and third order in terms of the perturbation ~,

for each of the three illustrative cases in Section 5.2. For all

three, the state equation [Equations (5.13), (5.18) and (5.23)] is of

the form

=d (s 0r=-l, =(C.1)

where y is the adiabatic compression constant. In order to expand

Equation (C.1), we should first transform the total time derivative

d/dt, in the (r,t) coordinates to that in the (ZOt0 ) coordinates.

Equation (5.8) immediately gives

(C.2)

Therefore, it follows that

d ddt dt (C.3)

Equation (C.3) states that the rate of change of a function along the

perturbed trajectory is the same as that along the equilibrium tra-

jectory.

From Equation (5.8) it follows that

~-1 7 (. g I2 n , = 1 + .[(V. c.4- V:V]+ X , (.)

where the subscript 0 on x,y,z has been dropped. In order to expand

Equation (C.1), let
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Ss = s + s + s= + + C2 +.. (C.5)
0 1 2 ' 2+(c)

Here n can be expressed in terms of g from Equation (C.4). Substi-

tuting Equations (C.4) and (C.5) into Equation (C.1), and expanding it,

gives the s as
n

S1 S 2 s0( 2 ) s3 = -s0[3-Cl(2C2- )]... (c.6)

(i) Parallel Compression: From Equation (5.13), I' = 0 and 2 for

s and s , respectively. By Equation (5.11), the Jacobian in Equation

(C.4) reduces to

az
a~ 1 + az . (c.7)

Equation (C.6) then becomes

s.1= s2 = s13 ... .

ill~ a~ ii
©

z 2c8

11°2 az ,s112 = 3s10 \az- s 3 = -4s (lz)3 (C.8)
II' 110 ~~~~~~II 3 i a'l 

(ii) Cylindrical Compression: From Equation (5.18), r = 1 and 0 for

s and s , respectively. By the assumptions in Equation (5.16), the
' II

Jacobian for this case becomes

aix y ax y (cy9)
± ~ ax y y b xy (x9)

Equation (C.6) then yields
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s1 -So0 (V . ) ,

s13 -so(' 1 ) [

s12 = 510[(l . 2 _ dax agys2 = Sio [(V ax ay
ax a_

+ by x J'

('7 i )2

SIl = s112 = 113 = 0 .

- 2 gx
ax

+2ax ay xby ax '

(iii) Spherical Compression: From Equation (5.23), r = 2/3. From

Equations (C.4) - (C.6), the s 's are obtained as

1 - 3 V0 C' 
s2 = 3 sO[-I (V. )2 + v ,
2 = 3 L3 Io- ,

' 5 - (
' (:) - a3S3=3 5 oLT ('7~~~~~~~~~~~~~~~~~~~~~~.,) 3- 5 (V7. 5) ( v : V)-
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Nonlinear Interaction Between Circularly Polarized Waves and Electron Plasma Waves*
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This paper presents a general analysis of nonlinear three-wave interaction in a hot magnetoplasma
between circularly polarized waves propagating at small angles to the static magnetic field, and electron
plasma (Langmuir) waves propagating parallel. First, the coupled mode equations are derived by iterative
solution of the Vlasov equation. Simplified expressions for the coupling coefficients are then obtained
for all of the wave combinations for which the frequency and wave number synchronism conditions can
be satisfied, and the wave coupling coefficients are nonzero. These comprise interactions among three
right-hand polarized waves, two circularly polarized waves and one Langmuir wave, and three Langmuir
waves. The paper concludes with a brief discussion of the specific cases most likely to be worth subjecting
to detailed numerical analysis.

I. INTRODUCTION

The nonlinear interaction of three or more waves in a
magnetoplasma has been a subject of extensive in-
vestigations in recent years.' Initially, for simplicity,
most of these investigations employed either cold
plasma theory, or macroscopic theory based on moments
of the Vlasov equation. More recently, interest has
progressed to studies in which the Vlasov equation itself
is used. The primary reason for this is the fact that even
certain important small-signal phenomena, such as
collisionless Landau and cyclotron damping, and the
propagation of cyclotron harmonic waves, only emerge
from a microscopic treatment. It is consequently
essential to begin studies of nonlinear interactions
involving these phenomena from the Vlasov equation.
An additional reason is that certain new effects appear
which have no counterpart in cold-plasma theory. In
particular, for nonMaxwellian charged particle velocity
distributions, the possibility of nonlinear interaction
between waves carrying positive and negative small-
signal energies exists. This can lead to explosive
instability,2 .3 in which all of the wave components grow
at the expense of the charged particle energy.

Nonlinear plasma wave propagation is a notoriously
complicated subject because of the wide variety of
phenomena that may occur: Individual waves may
suffer nonlinear damping due to wave-particle interac-
tion, and two or more waves may interact with the
particles, or with each other in pure wave-wave interac-
tion. In each case, for the interaction to be strong,
certain synchronism conditions must be satisfied
between such quantities as the wave frequencies, wave
numbers, cyclotron frequency, and charged particle
velocities. It seems likely that progress in such a com-
plex situation will be made most easily by studying
each effect separately in its region of greatest strength,
and comparing the results for a given set of plasma
parameters to determine which interaction effects
should dominate. The final predictions, and if feasible
the separate analyses leading to them, should then be
subjected to experimental verification.

In this scheme, the authors have opted to concentrate
on wave-wave interactions, in which the charged
particle velocity distribution is assumed to remain
steady in time. To further restrict the field, attention is
limited to the high-frequency propagation branches
obtained ignoring ion motions, and to propagation at
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0=ir/2 or &00, i.e., corresponding to interaction
between principal modes propagating either perpendic-
ular or parallel to the static magnetic field. So far, the
case of perpendicular propagation has been examined
in most detail by the authors and others. Theoretical
studies have been published of three-wave interactions
between cold plasma, transverse (extraordinary)
waves?, 6 and between hot plasma, longitudinal (cyclo-
tron harmonic) waves,7 '8 and have received encouraging
support from laboratory experiments.9 'o For approxi-
mately parallel propagation, a cold-plasma treatment
has been given for the interaction of right-hand polarized
transverse waves," and the interaction between
circularly polarized modes and a longitudinal electron
plasma (Langmuir) wave has been studied, using
moment theory for the longitudinal wave. 2",3 The
purpose of the present paper is to extend this work to
include hot-plasma effects stemming from the Vlasov
equation.

The general procedure for analyzing three-wave
interactions adopted here is as follows. Maxwell's
equations and the Vlasov equation are first expanded to
first order. This yields equations for the field quantities
and a small-signal dispersion relation. The expansion is
then taken to second order, and all second-order terms
are approximated by substituting first-order quantities
in them. This can be done for three waves provided
that the small-signal dispersion relations allow their
frequencies and wave numbers to satisfy certain
synchronism conditions. This procedure is carried

through in Sec. II for a general charged particle velocity
distribution, and leads to a set of coupled mode equa-
tions.

In Sec. III, these coupled mode equations are
specialized to three cases. The first is that of three right-
hand polarized waves propagating almost parallel to the
static magnetic field (there is no interaction in the limit
of parallel propagation). Three left-hand polarized
waves need not be considered since the topology of the
dispersion characteristics does not allow the synchronism
conditions to be satisfied. Mixtures of left- and right-
hand polarization do not couple. The second is that of
two circularly polarized waves interacting with a
Langmuir wave, all three waves propagating strictly
parallel to the magnetic field. The synchronism con-
ditions can be satisfied for three different combinations
of wave types, and these are treated individually. The
case of one circularly polarized wave and two Langmuir
waves propagating parallel is of no interest as coupling
cannot occur. The third case considered is that of
interaction among three Langmuir waves, and our
treatment confirms the form of the relevant coupling
coefficient given recently by Dysthe.'4

Having obtained the general coupling coefficients
and coupled mode equations, specific problems of
mixing and parametric amplification may be attacked.
Although no detailed numerical solutions are given in
this paper, some comments on the procedure to obtain
them are given in Sec. III.D, and the likely results are
discussed in Sec. IV.

II. THEORY

A. Basic Equations

Our system is described by Maxwell's equations

V x E=-OH/Ot, V xH=g+(a/raT),

supplemented by an expression for the convection current density

j = -fFVdV.

The evolution of the charged particle velocity distribution function F is described by the Vlasov equation

(aF/Ot) +V. VF- (E+V xH) . (OF/aV) -Qc(aF/a9) = O,

where we have used cylindrical coordinates in velocity space defined such that

Va = V coso, V, =-V sing,

and the static magnetic field B0 is oriented along the z axis.
Equations (1)-(4) have been written in terms of the normalized variables

E = - eE/mcwo, H =- eB/mw0, j =- J/noec, V = v/c,

X=wox/c, T = Wot, Q=w/wo, = =-eBo/mo, K= kc/wo,

where w0 is the electron plasma frequency, and the remaining symbols have their usual meanings.
Taking the spatial-temporal Fourier transforms of Eqs. (1) and (3) yields

Ky x E= QyHy, Ky xHy= - je--jQE ,y

jQF,--j(V.K,) F-+Q-f(0F,/a) - (&-+V x H) . (8Fo /aV) = A Q-+V x H) . (OFp/OV),
a,1
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where it has been assumed that the synchronism conditions

Qfi=Q+f20, K,=Ka+Kg, (7)

for three-wave interaction are satisfied. The first two expressions of Eq. (6) are linear. The third has linear terms on
the LHS, and nonlinear driving terms on the RHS.

In what follows, we shall restrict our attention to circularly polarized waves propagating along or at small angles
to the static magnetic field, and electron plasma waves propagating along it. Under these conditions, we may write
the wave number components as (K, ,i,, KOu,i,, Kiz), where ix, iv, i, are unit vectors. If we introduce the com-
plex transverse vectors

g,=&,+jgu,, H,=H.,y+jHu-,, = -j.,= y = - f F,V 2 dVdV exp(-io), (8)

appropriate to propagation of right-hand polarized waves, then to lowest order in 0 Eq. (6) yields the expressions

(K,-//~2
) (8~0-,--8) +8,= ( j/Q-y)J,, (K,1/20./) (8v0,*+8,'*0) +.,-=-jAg/9r, (9)

and 

(r-KV,) F,+jQ-j /_
a4

9,' j h a+ 2Q[0-yexpj¢0+Oe* exp (-j2) ] (VI dV-Va )] + 2b,[F,--* exp(-jo) +£rexpj¢>I Fo
+j {287[aq-K

'

[a+ [a K expj0+Wa*exp(-j0)]( dV . ] .v d)=-JZ &a a+M - v a)]2.a

+2 (expjd) (aab+adajgd ) +2[exp(-j4) -(_ a*ba-j4_n*& d)} Fp+2( VK,) [EO, expjf+O,* exp(-j4)]F.,.

(10)

Here, Fo is the unperturbed electron velocity distribution function, and O, has been written for a,-+ijO,. The
operators a and ba, and the velocity-dependent quantity d., are defined by

a= O/OVV, ba = (d/OV) + (Kn,9) [V(/V Vz)- V,(a/aV) ], da = V-'[1- (VKa/Qa)]. (11)

B. Iterative Solution

Equation (10) may be solved iteratively to any desired order of approximation. The first iterate is obtained by
setting F# and F, to zero on the RHS and solving to obtain

I [ a K, (O,~ + .,* exp .( i-jf )(TV. a_]-(, exp _ exp(-j)lF,
=

~~~1 2-J0, T,,0 TI- av \'-a1
~

V)] 'T1

- -

T,_, ,J-

(12)
where T,, is defined by

T,~r=Q2r-KV,--nib. (13)

This result can be used as an improved guess for F0 and F, on the RHS of Eq. (10). After performing a total of
three iterations, we obtain all terms quadratic in £ and linear in 0. We may then write F, as a power series in £ as

F,= (Gy,1 +G,21) expjo+ (G,0lo+G,20) + (G,,-c+G.,2 _,) exp(-jo) + (other terms), (14)

where G,11, Gyo, G,21, and G,20 are given by

Gal= -j {b,2 + K- 2 ," [To,o (V a - V -) +Q-,Va Fo,
2T., 2Q.,T.oT., 1 I v avF

Glo = -j[8 ,, (a/rTo) +q-,*8 ( K, V/4TeTo) b,]Fo,
V KO,V KB V

G =,-2 1 (£ *) \ T o (b,+d4) V b+ - (b-+d,) To_l-lbo+ (bo+2do) - b
TTI To T.1, flTFITo Tel T.1 T.2

KoOo V' 2KO0
+ _b, - be- -2 b) Fo- (2a&o) (T-,F 1bT~o-1 a+ T,-laT,, 1-b,)Fo,

G.,
20

= }(g*~)[,0T(bd) T1 -, TB.,o-(b,+d) TbjFo-., -a(To )aF. ( 15)
G r20 = at(£_B*£a)E[Tto-l( bo+ (/B)Tal-ba+ Twyo-I(ba+dal) TB3--Ibg]Fo-£~ia ogT^>o-la ( TBOl+ Tao') aFo. ( 15)
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Substituting Eq. (14) inlto Eqs. (8) and (9), we obtain

(KY2/Q2-) (0O8---) +87= (-2irj/Qf) ff V2dVdVz(G,.+G- 1 ),

(K. 2 /2Q 2 -*) +( *+-*0 y+.= (- 2'j/,) f f VdVVdVz. (G 1o+G,2 0o) (16)

Substitution of the expressions defined in Eq. (15) finally reduces these to

[1- (K 72 /Q2) + (27r/Q?) f V2dVdV. (bFo/2Tr1 ) ]84+,0 ,:. - = (-2-rj/Qy,) f f V2dVdVzGy 21 ,

214I0.*84[-1- 2rf f (FoVdVdVz/Tyo2) ]zy = (-2irj/Qy) f fVdVVzdVG 2 ,,o (17)
where ,If is given by

i?= (K 2/Q2) - 2r f FoVdVdV,[ ( K, V./T.Qy2) + ( K,2 V 2 /2Qy) [(T,0 2T, 1)- (KV/1QT.,oTT 12) ] }. (18)

C. Velocity-Space Integration

Equation (18) is the desired general form of the coupled mode equations, describing how the electric field com-
ponents 8, and 1, of the y wave are influenced by those of the a and B components. To solve a specific problem, it
is necessary to specify the unperturbed velocity distribution F0 and to carry out the integrations. Considerable
progress can be made if the not unduly restrictive condition is imposed that F0 is of the separable form

Fo(V, V.)=Fo.(V)Fo0 (Vz), 27rfFo.(V)VdV=1. (19)

This will be assumed in what follows.
It is also necessary to obtain expressions analogous to those of Eq. (17) for the a and 6 waves. The method of

doing so is as follows. If we wish ey to represent one of the lower frequency waves, rather than the highest as in
Eq. (7), it is only necessary to change the sign of B in the foregoing analysis. To demonstrate the procedure, and in
anticipation of the requirements of Sec. III, we shall make this change. After carrying out appropriate velocity-
space integrations, Eq. (17) then reduces to

De8 ,- ,IqO-,8z. ~= Pyg,,8*-+ QYB£8,8: *,E DyrSgw+'tOg5 *8y=QB8,,g£* + R=£8 ,,: *. (20)

The quantities D, and Dy,P and the coupling coefficients Pt, Q-B, and R-, are given by

D,= X- (K 2 /f2, 2 ) - ( 1/Q,2) fdVzFo[( To/T.,1 ) +K,2 ( f' 2 /2T,1 2 )],

D,P= 2[1-- fdVzFoz( 1/Tro ) ],

KI OI f 4T.oTo80= - 1: K~ dVAF. lT
1

T
1 1

+&KOK
5
K

7
V 4 a (.T9T1-(T--+0-)

2K ,2 V2 ( o Tro\ _ [ d 0
7- +,"T± + 2K5 2 1 2 (T,,,-+-To

- ') + T (TOt-To,
-
_

)
aITOIT'i T. al t l TBITOnT, TooT01T.~

2KOKyV 2 Ter T,, 2Tao 2T0, 1 1

+ T #, T5 Ty, L Tpo T'oo T,2 TO,-T.

j f ,~'[ 2 / K7T._ K~T.,o\
Q (V0 = I-&KyKf 2 - (T.1 T5 0 T',

[T0 0 2( T.- T, ,

R,=- 2jf dVFo, (a/a V) (ToToToT,) -'. (21)

The coupling coefficient Q0 is obtained from Q, by interchanging / and y. In the above expressions, a bar denotes
an average value of the quantity concerned, i.e., of V2 and V4 . As may readily be guessed, Eqs. (20) and (21) re-
sult from some very lengthy manipulations. Attention is drawn to some of the more important points in the deriva-
tion in an Appendix to the paper.

The significance of D, and DYP is worth noting. If we consider small-signal waves propagating parallel to the
static magnetic field, the expressions in Eq. (20) reduce to Dy 0-D V, and we recognize the coefficients as
the well-known hot-plasma dispersion relations for circularly polarized transverse waves, and longitudinal electron
plasma (Langmuir) waves, respectively.
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III. APPLICATIONS

We are now ready to apply the general results of
Eq. (20) to specific cases. Three possibilities im-
mediately come to mind: first, that all three waves
might be circularly polarized transverse waves; second,
that two circularly polarized waves might interact with
a Langmuir wave; and third, that three Langmuir
waves might interact with each other. We will indicate
the appropriate coupling coefficients for these interac-
tions separately, and then discuss how they may be
used in the solution of mixing or parametric amplifica-
tion problems in inhomogeneous plasmas. To emphasize
the type of wave concerned, we will introduce the
variables

8~n = &.+jgv~, 8~~ = £ZA-ja,

FaP=gza, (aO>O), (22)

referring to right- and left-hand circularly polarized
waves and Langmuir waves, respectively.

A. Three Circularly Polarized Waves

Eliminating &E from Eq. (20), and neglecting terms
higher than first order in 0 and second order in £ vields

Dv&Y R = CRR &,,RR*, (23)

where the coupling coefficient CRR is given by

CRR= P-- E (Z'at/DOP)QO,

WTa = 1--'fFoFddV,

X[T,-'+ (Kaf2V1/2TgoTa,)(T go-'l+Tir- ' ). ] . (24)

It is interesting to note that CRR-0 as ,0,, 06, --+0. Thus,
there is no interaction for purely parallel propagation,

TABLE I. Acceptable combinations of waves for
interaction (0=0).

Signal and
Pump (p) idler (s, i)

R R,P
L L,P
P R,L

and this property is independent of the precise form of
the velocity distribution.

In previous work," the authors have considered
interaction in a cold plasma. It is possible to retrieve the
expression for CRR derived there by evaluating Eq. (24)
for the delta-function velocity distribution Fo( V, Vz) =
6(V)6(Vz)/2irV appropriate to a cold plasma.

B. Two Circularly Polarized Waves and a
Langmuir Wave

In this case, interaction is possible for 0 = 0. Equation
(20) then simplifies to

DPg, = Q,,agl P * , D rP8P = Q09g£,g*. (25)

Of the several possible combinations of left- and right-
hand polarized waves (L, R) and Langmuir waves (P),
there are only the three given in Table I for which the
synchronism conditions can be satisfied, and the coupling
coefficients are nonzero.' For illustration purposes, we
have called the highest frequency component the
"pump" wave, and the lower frequencies the "signal"
and "idler," analogous to conventional parametric
amplification terminology.' We will now consider the
acceptable combinations separately.

1. Pump R-Signal and Idler R, P (or P, R)

The required coupled mode equations are obtained from Eq. (25) as

DRR =R
= -CRp, sRP, DRR CRP= CDiP& P =CRpR*P, (26)

where D.R, D aR, and DiP are given by D? in Eq. (21) after replacing y by s, p, and i, respectively. The coupling
coefficient CRP is given by

j - f dVF 0 . F2 (KrTpo K0T KK (r lror),]
'CRP= 2Q Q It dV3F°o[T 2( T- - T )-Kp~al/2 av (T~l~io~al)-l] (27)2fpg% Jr ' Ti0: Tr, T~l / V..

The first and second expressions in Eq. (26) have been obtained from the first expression of Eq. (25) by replacing
(a, 1, y) with (s, -i, p) and (p, i, s), respectively. The last expression in Eq. (26) derives from the second of
Eq. (25) by replacing (a, 3, y) with (p, s, i).

2. Pump L-Signal and Idler L, P (or P, L)

The results for this case can be obtained simply by changing the sign of Kp, K,, Ki, Qp, Qa, and Qi in Eq. (26).
When this is done, the electric field vectors change from & R, 8AR, 8i P , to gpL* gL* iP*, respectively. Upon making
these substitutions, and then taking the complex conjugate, Eq. (26) becomes

DLP,,L = - CLPgLiPS LgL = CLL1iP*&p L , DiP£iP = CPL*p L (28)
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where DL is defined as

DL= 1- (K 2/Q2y) - (l/0,1) fdVzFo,[(T.o/T-,) +K,2 ( V 2 /2T,- 2 )], (y = p, s),

and the coupling coefficient CLP is given by

(29)

CLP= (j/2QQ.) fdVFos { (2/Tio2) [ (KTo/Tp-,)-(KKTo/T.-,) ]-KK.Kf1(a/a V) (Tp_2TioT,.,)-'}. (30)

3. Pump P-Signal and Idler R, L (or L, R)

The results for this case are obtained from Eq. (26) by changing the sign of 9, and K,, and then making the
interchange (p, s, i)--(s, i, p). When this is done, the field vectors change from 7R, 8 5R, 8,P, to 8,L*, 8RX, 8P,
respectively. Upon making these substitutions, we obtain from Eq. (26) the coupled mode equations

Dprgpp = - CRL& L&R, DR&,R = CRL£&L*gpP, DiL&,L= CRL£SR*&pP,

where the coupling coefficient CRL is given by

_ dVF[ 2P0[K 2 (K.rTo KiT.o- I
CRL= - ILTd 0 2 x , + - +K.KV a (T po0j_-)-l .

(31)

(32)

C. Three Langmuir Waves

For this case, we put 0 = 0=0T in Eq. (20) to obtain

D,8 yP= RYE<PF*. (33)

The coupled mode equations take the form

DpPgPP= =-Cpp6gPgP, D.P&,P=Cpp8,pPjP*,

DjPgiP = CpplpP8sP * , (34)

where Dpr , DiP, and DP, are given by Eq. (21) withy
replaced by p, s, and i, respectively, and the coupling
coefficient Cpp is given by

Cep=-2jfdV.F0,(0/0V,) (TpoT,oTio)-'. (35)

Here, the expressions in Eq. (34) have been obtained by
replacing (a, A, y) in Eq. (33) with (s, - i, p), (p, i, s),
and (p, s, i), respectively.

D. Procedure for Solution of Problems

The coupling coefficients derived in Eqs. (24), (27),
(30), (32), and (35) constitute the primary informa-
tion needed for detailed numerical studies of the non-
linear interactions involved. The picture is only com-
pleted, however, when one inserts in them wave
numbers and frequencies satisfying the synchronism
conditions and the small-signal dispersion relations.
These have been given elsewhere for the cold-plasma
approximation to the results of Sec. III.A," and the
hydrodynamic approximation to those of Sec. III.B. n

They would have to be recalculated for any other
velocity distribution chosen.

If we assume that the synchronism problem has been
solved at some point in a weakly inhomogeneous
plasma for which the dispersion relation D, is of the
form

D,=D,[K(X), Q, X], (36)

then the most general problem is to determine how 8,

varies. It will be noted that all of our wave equations
are in the general form

Dyy = C,8 08&. (37)

Using the technique of Berk and Book,"6 we can expand
these equations around the point of noninteraction to

(a)

(21/3)

(./3)

FIo. 1. Synchronism conditions for nonlinear interaction
between three right-hand polarized waves in a cold plasma.
(Heavy portions of curves indicate regions over which the pump
and idler can vary. Arrows indicate signal and idler variation as
pump increases.) (a) Pump in upper branch; (b) Pump in lower
branch.
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(a) (b) (c)

FIG. 2. Synchronism conditions for nonlinear interaction between two circularly polarized waves (R or L), and a plasma wave (P)
in a cold plasma. [Cut-off frequencies U.,Lw (l+1 2./4)112 1z4,/2.] (a) Pump R-Signal and idler R, P; (b) Pump L-Signal and
idler L, P; (c) Pump P-Signal and idler R, L.

obtain

ay9 aD 1 [ a0 / aD)\ 2Dy 9K] , 080aDe
_ - + _~

OX 9Ky [aX 9K OK,2 aX OT 90,

=-jC&,,;t. (38)

Thus, once the dispersion relations and coupling co-
efficients are known, one may determine through Eq.
(38) the variation of each wave amplitude in time and
space, in homogeneous or weakly inhomogeneous
plasmas, and for whatever type of problem is of interest,
e.g., wave-wave mixing, or parametric amplification.
Several examples of the procedure are given in Ref. 13.

IV. DISCUSSION
A very important point to note concerning the

coupled mode equations [Eqs. (23), (26), (28), (31),
and (34)] derived for the various cases discussed in
Sec. III is that the coupling coefficients for the signal
and idler equations are invariably equal in magnitude
and sign, and equal in magnitude but opposite in sign to
that for the pump equation. This is sufficient to
guarantee that the Manley-Rowe relations are sat-
isfied. 5 The applicability of these relations to the
problems studied here is not only of theoretical im-
portance, but also constitutes a check on the accuracy
of the extremely lengthy algebra and manipulations
leading to the coupling coefficients.

Although these coupling coefficients [Eqs. (24), (27),
(30), (32), and (35)] appear to be quite complicated,
they are in fact straightforward to program for com-
puter solution. Numerical results can then be obtained
for wave growth due to mixing, or parametric amplifica-
tion, as soon as the detailed form of the unperturbed
charged particle velocity distribution F0 is specified.
We have not yet carried out such a program, and will

simply speculate here on some directions that appear to
be worth following. We will do so by considering what
additional features will appear when previous treat-
ments are extended to include hot-plasma effects.

The first consideration in three-wave interaction
problems is to determine what opportunities the small-
signal dispersion relations offer for the frequency and
wave number synchronism conditions to be satisfied.
We shall examine first the case of three right-hand
polarized waves propagating in a cold plasma. There are
then two situations in which synchronism can be
achieved." These are shown in Fig. 1. In the first, the
pump and signal lie on the upper branch, and the idler
lies on the lower (whistler) branch. In the second, all
three waves lie on the lower branch.

Suppose now that the plasma electron velocity dis-
tribution is Maxwellian. Thermal effects will make only
a very slight difference to the shape of the upper
branch, and will introduce no collisionless damping
there, since the phase velocity exceeds the velocity of
light. The lower branch will be susceptible to collision-
less damping, however, and this will become particularly
strong for fQc-Q <KV,. Here, Ve (<<1 for our non-
relativistic theory to be valid) is the thermal velocity
normalized to the velocity of light. We may reasonably
conclude that as V, increases from zero, the weak
parametric growth predicted by the cold-plasma theory
will be progressively quenched. The quenching effect
will be greatest if any of the interaction frequencies
approach Q, so the case with all three waves on the
lower branch will probably suffer most.

The situation becomes much more interesting if the
plasma electron velocity distribution is nonMaxwellian.
The upper branch will still be almost unchanged from
its cold-plasma shape, but the lower branch can be
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strongly modified and become unstable.17 The possibility
exists of both positive and negative energy modes
occurring, and these might lead to explosive instability.
It would be of great interest to determine the relative
growth rates of the small-signal and nonlinear in-
stabilities to see which would dominate in experimentally
realizable situations.

So far, we have only discussed the interaction of three
right-hand polarized waves. We now consider the three
cases for which coupling coefficients were derived in
Sec. III. B. Typical synchronism conditions for a cold
plasma are shown in Fig. 2. As shown in Figs. 2(a) and
(b), the combinations of R-R, P and L-L, P do not
look very interesting for further study: even the
Langmuir wave has a phase velocity of the order of the
velocity of light, so the effects of nonrelativistic thermal
motions will probably be small for all three wave
components.

The R-R, P case is actually richer in synchronism
possibilities than has been indicated in Fig. 2(a). For
the plasma frequency lower than the cyclotron fre-
quency, i.e., Q2,> 1, it is possible for the pump and signal
to lie on the lower branch. For an isotropic Maxwellian
velocity distribution, all three waves would then be
subject to collisionless damping. For anisotropic dis-
tributions, a wide variety of interesting combinations
involving damped and growing waves would be possible,
and would require extensive investigation. We may also
remark that, although for cold plasma it is not possible
to achieve synchronism with the pump and signal in the

upper and lower branches, respectively, this condition
could be achieved with suitable velocity distributions,
and is open to investigation.

The remaining combination in Fig. 2 is that of
P-R, L. We note that the plasma wave has a phase
velocity of the order of the velocity of light, so that it
will be very little affected by the inclusion of thermal
velocities. The whistler branch may be damped and/or
unstable, depending on the velocity distribution chosen,
but it seems unlikely that significant nonlinear effects
will occur. It should, incidentally always be remembered
that in cases such as this one, where one of the waves
(P) has an extremely low group velocity, plasma in-
homogeneity will severely limit the distance over which
the synchronism conditions required for interaction can
be satisfied.

The final case treated in Sec. III, i.e., that of three
Langmuir wvaves, has no solution in cold-plasma theory,
since the synchronism conditions obviously cannot be
satisfied in this limiting case of dispersionless plasma
oscillations. For nonMaxwellian velocity distributions,
a wide variety of damped and growing solutions can
occur, however, and present a very important topic for
further detailed nonlinear studies. To take a specific
example, it would be valuable to examine the case of an
approximately monoenergetic beam interacting with a
Maxwellian plasma to determine to what extent the
fastest-growing small-signal component is damped non-
linearly by wave-wave interaction, as opposed to wave-
particle interaction.

APPENDIX: DERIVATION OF THE COUPLING COEFFICIENTS P., Qua Q0

After performing double integrations with respect to V and Vz, and changing the sign of A, Eq. (17) reduces to
the forms expressed by Eq. (20), but with coupling coefficients defined by

~~~J rr V3 ~~~~~~~~~~V 3
P.= dVdVF0 ,(KybT,,-r(b0-d0)TV -K,0,boTp, l(b.-d.)

4Q2, ffT. 1T. 0 T.,, l'. 0

V V2 V V2 2K0g V2 \
+=/VoEK6b . (b -2d,) - KrOob. b- + Vbe - '

Qy'(irj/Q,) ffdVdViFo[bT,,l-la( V2 /T.,,)-aTo'lbh. ( V2 /T.,,)],

Qo = (-rj/Q,) f fdvd Vd Fo[b.T 1 -l (b5 - d#) (V V/Io) - bTl-' (b.- d) ( VV/T., 1)]. (Al)

By use of Eqs. (11) and (19), the expression for Q., may be reduced to that of Eq. (21). It may also be shown
that Qg, is related to Q.,, simply by interchange of / and %. The main problem is that of reducing P, To accomplish
this, we note that the wave number synchronism condition implies that

(A2)

It follows that the equation for P, can be separated into two parts: one involving K~OO, and the other involving
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KO,. After differentiation of the integrands, we have

KsOo f#Fo.4r.o
Py =j 8- dV- F KTK (TK, 1 - Tg-')+KKpKJ7 4 (_ E[(ToT- 2 )--(TlT' o)-_] )

dVSzZ2 2F0 . T2 2[(aa)-(TI2T-| T-t (T/,-,+To - )
1/ , T0

Tt~~~~~lT:°Tas ~ ~ ~ ~ ~ ~O /4r, 2a0 ra0 1

+~ ~~~~~~ 2K~K* T-oTO-4o~
V

~--
+K.K(KTT ` -+ (T1TV( ,)-'i(TTT2T5 )-+-(T2 rTI)-K-(T#Tr 0)- j +2K0 2 V - T 0 +

-'-2KKV
2

T,,, v T ~ ______4To1TlT-,o

- T~0 * j (T ~0

+2K +KKVy2 - - T )i- 2- (Tox-)+T]o-1)+2K.Ko f2(T-,Tao)-'(To-I-T.-')-2Ko2f2 T
2

T___ T/2 I2 \ TeT~0
T'IT0 - Tol 01TTo

+2KKK7 2 TT (T-,,-'+ TT5o--) +4KOK V2 ( TET) T[ ( T-,'I )--(T,,r.)-- (TrOI))- ] . (A3)
T,9iTiTyoTT, 

P5 is to be rearranged so that it shows symmetry in 3 and y. Each of the two integrands in Eq. (A3) has terms
of zero, second, and fourth order in V. The symmetry in y and , of the zero and fourth-order terms is comparativcly
easy to show in the form of the first two terms in the large curly bracket of Eq. (21). The symmetric property of
the second-order terms, i.e., those in V2, is not an easy matter to demonstrate, however. To do so, we note first that
symmetry of the last terms in the integrands of Eq. (A3) is evident from comparison with the f'4 terms. By use
of the synchronism conditions to eliminate K,,, the rest of the 1-

2 terms may be divided into three groups, involving
K02 , K 2, and KOK,. After some tedious algebra, all of the f2 terms then reduce to the symmetric form expressed
in Eq. (21).
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